Skip to main content
Archives of Disease in Childhood logoLink to Archives of Disease in Childhood
. 1997 Nov;77(5):441–444. doi: 10.1136/adc.77.5.441

Hyperammonaemia with distal renal tubular acidosis

S Miller 1, G Schwartz 1
PMCID: PMC1717366  PMID: 9487970

Abstract





The case is reported of an infant with hyperammonaemia secondary to severe distal renal tubular acidosis. A clinical association between increased concentrations of ammonia in serum and renal tubular acidosis has not previously been described. In response to acidosis the infant's kidneys presumably increased ammonia synthesis but did not excrete ammonia, resulting in hyperammonaemia. The patient showed poor feeding, frequent vomiting, and failure to thrive, but did not have an inborn error of metabolism. This case report should alert doctors to consider renal tubular acidosis in the differential diagnosis of severely ill infants with metabolic acidosis and hyperammonaemia.



Full Text

The Full Text of this article is available as a PDF (95.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alpern R. J. Trade-offs in the adaptation to acidosis. Kidney Int. 1995 Apr;47(4):1205–1215. doi: 10.1038/ki.1995.171. [DOI] [PubMed] [Google Scholar]
  2. Batlle D. Renal tubular acidosis. Med Clin North Am. 1983 Jul;67(4):859–878. doi: 10.1016/s0025-7125(16)31182-8. [DOI] [PubMed] [Google Scholar]
  3. Brenner R. J., Spring D. B., Sebastian A., McSherry E. M., Genant H. K., Palubinskas A. J., Morris R. C., Jr Incidence of radiographically evident bone disease, nephrocalcinosis, and nephrolithiasis in various types of renal tubular acidosis. N Engl J Med. 1982 Jul 22;307(4):217–221. doi: 10.1056/NEJM198207223070403. [DOI] [PubMed] [Google Scholar]
  4. Bushinsky D. A. Net proton influx into bone during metabolic, but not respiratory, acidosis. Am J Physiol. 1988 Mar;254(3 Pt 2):F306–F310. doi: 10.1152/ajprenal.1988.254.3.F306. [DOI] [PubMed] [Google Scholar]
  5. DiGiovanni S. R., Madsen K. M., Luther A. D., Knepper M. A. Dissociation of ammoniagenic enzyme adaptation in rat S1 proximal tubules and ammonium excretion response. Am J Physiol. 1994 Sep;267(3 Pt 2):F407–F414. doi: 10.1152/ajprenal.1994.267.3.F407. [DOI] [PubMed] [Google Scholar]
  6. Good D. W., Burg M. B. Ammonia production by individual segments of the rat nephron. J Clin Invest. 1984 Mar;73(3):602–610. doi: 10.1172/JCI111250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hudak M. L., Jones M. D., Jr, Brusilow S. W. Differentiation of transient hyperammonemia of the newborn and urea cycle enzyme defects by clinical presentation. J Pediatr. 1985 Nov;107(5):712–719. doi: 10.1016/s0022-3476(85)80398-x. [DOI] [PubMed] [Google Scholar]
  8. Izraeli S., Rachmel A., Frishberg Y., Erman A., Flasterstein B., Nitzan M., Boner G. Transient renal acidification defect during acute infantile diarrhea: the role of urinary sodium. J Pediatr. 1990 Nov;117(5):711–716. doi: 10.1016/s0022-3476(05)83326-8. [DOI] [PubMed] [Google Scholar]
  9. Jequier S., Kaplan B. S. Echogenic renal pyramids in children. J Clin Ultrasound. 1991 Feb;19(2):85–92. doi: 10.1002/jcu.1870190205. [DOI] [PubMed] [Google Scholar]
  10. Rodríguez-Soriano J., Vallo A. Renal tubular acidosis. Pediatr Nephrol. 1990 May;4(3):268–275. doi: 10.1007/BF00857675. [DOI] [PubMed] [Google Scholar]
  11. Sager S., Grayson G. H., Feig S. A. Methemoglobinemia associated with acidosis of probable renal origin. J Pediatr. 1995 Jan;126(1):59–61. doi: 10.1016/s0022-3476(95)70502-3. [DOI] [PubMed] [Google Scholar]
  12. Sulyok E., Guignard J. P. Relationship of urinary anion gap to urinary ammonium excretion in the neonate. Biol Neonate. 1990;57(2):98–106. doi: 10.1159/000243169. [DOI] [PubMed] [Google Scholar]
  13. Tannen R. L. Ammonia metabolism. Am J Physiol. 1978 Oct;235(4):F265–F277. doi: 10.1152/ajprenal.1978.235.4.F265. [DOI] [PubMed] [Google Scholar]
  14. Ward J. C. Inborn errors of metabolism of acute onset in infancy. Pediatr Rev. 1990 Jan;11(7):205–216. doi: 10.1542/pir.11-7-205. [DOI] [PubMed] [Google Scholar]
  15. Welbourne T. C. Interorgan glutamine flow in metabolic acidosis. Am J Physiol. 1987 Dec;253(6 Pt 2):F1069–F1076. doi: 10.1152/ajprenal.1987.253.6.F1069. [DOI] [PubMed] [Google Scholar]
  16. Wright P. A., Knepper M. A. Glutamate dehydrogenase activities in microdissected rat nephron segments: effects of acid-base loading. Am J Physiol. 1990 Jul;259(1 Pt 2):F53–F59. doi: 10.1152/ajprenal.1990.259.1.F53. [DOI] [PubMed] [Google Scholar]
  17. Wright P. A., Knepper M. A. Phosphate-dependent glutaminase activity in rat renal cortical and medullary tubule segments. Am J Physiol. 1990 Dec;259(6 Pt 2):F961–F970. doi: 10.1152/ajprenal.1990.259.6.F961. [DOI] [PubMed] [Google Scholar]
  18. Wright P. A., Packer R. K., Garcia-Perez A., Knepper M. A. Time course of renal glutamate dehydrogenase induction during NH4Cl loading in rats. Am J Physiol. 1992 Jun;262(6 Pt 2):F999–1006. doi: 10.1152/ajprenal.1992.262.6.F999. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood are provided here courtesy of BMJ Publishing Group

RESOURCES