Skip to main content
Archives of Disease in Childhood logoLink to Archives of Disease in Childhood
. 1997 Dec;77(6):471–473. doi: 10.1136/adc.77.6.471

Multiple causes of human kidney malformations

A WOOLF 1
PMCID: PMC1717414  PMID: 9496175

Full Text

The Full Text of this article is available as a PDF (109.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdelhak S., Kalatzis V., Heilig R., Compain S., Samson D., Vincent C., Weil D., Cruaud C., Sahly I., Leibovici M. A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family. Nat Genet. 1997 Feb;15(2):157–164. doi: 10.1038/ng0297-157. [DOI] [PubMed] [Google Scholar]
  2. Beck A. D. The effect of intra-uterine urinary obstruction upon the development of the fetal kidney. J Urol. 1971 Jun;105(6):784–789. doi: 10.1016/s0022-5347(17)61629-x. [DOI] [PubMed] [Google Scholar]
  3. Brook-Carter P. T., Peral B., Ward C. J., Thompson P., Hughes J., Maheshwar M. M., Nellist M., Gamble V., Harris P. C., Sampson J. R. Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease--a contiguous gene syndrome. Nat Genet. 1994 Dec;8(4):328–332. doi: 10.1038/ng1294-328. [DOI] [PubMed] [Google Scholar]
  4. Chevalier R. L. Growth factors and apoptosis in neonatal ureteral obstruction. J Am Soc Nephrol. 1996 Aug;7(8):1098–1105. doi: 10.1681/ASN.V781098. [DOI] [PubMed] [Google Scholar]
  5. Coppes M. J., Huff V., Pelletier J. Denys-Drash syndrome: relating a clinical disorder to genetic alterations in the tumor suppressor gene WT1. J Pediatr. 1993 Nov;123(5):673–678. doi: 10.1016/s0022-3476(05)80839-x. [DOI] [PubMed] [Google Scholar]
  6. Davis A. P., Witte D. P., Hsieh-Li H. M., Potter S. S., Capecchi M. R. Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature. 1995 Jun 29;375(6534):791–795. doi: 10.1038/375791a0. [DOI] [PubMed] [Google Scholar]
  7. Duke V. M., Winyard P. J., Thorogood P., Soothill P., Bouloux P. M., Woolf A. S. KAL, a gene mutated in Kallmann's syndrome, is expressed in the first trimester of human development. Mol Cell Endocrinol. 1995 Apr 28;110(1-2):73–79. doi: 10.1016/0303-7207(95)03518-c. [DOI] [PubMed] [Google Scholar]
  8. Ehrich J. H., Rizzoni G., Brunner F. P., Fassbinder W., Geerlings W., Mallick N. P., Raine A. E., Selwood N. H., Tufveson G. Renal replacement therapy for end-stage renal failure before 2 years of age. Nephrol Dial Transplant. 1992;7(12):1171–1177. doi: 10.1093/ndt/7.12.1171. [DOI] [PubMed] [Google Scholar]
  9. Ekblom P. Extracellular matrix and cell adhesion molecules in nephrogenesis. Exp Nephrol. 1996 Mar-Apr;4(2):92–96. [PubMed] [Google Scholar]
  10. Favor J., Sandulache R., Neuhäuser-Klaus A., Pretsch W., Chatterjee B., Senft E., Wurst W., Blanquet V., Grimes P., Spörle R. The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13870–13875. doi: 10.1073/pnas.93.24.13870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Feather S. A., Woolf A. S., Donnai D., Malcolm S., Winter R. M. The oral-facial-digital syndrome type 1 (OFD1), a cause of polycystic kidney disease and associated malformations, maps to Xp22.2-Xp22.3. Hum Mol Genet. 1997 Jul;6(7):1163–1167. doi: 10.1093/hmg/6.7.1163. [DOI] [PubMed] [Google Scholar]
  12. Gage J. C., Sulik K. K. Pathogenesis of ethanol-induced hydronephrosis and hydroureter as demonstrated following in vivo exposure of mouse embryos. Teratology. 1991 Sep;44(3):299–312. doi: 10.1002/tera.1420440307. [DOI] [PubMed] [Google Scholar]
  13. Irons M., Elias E. R., Salen G., Tint G. S., Batta A. K. Defective cholesterol biosynthesis in Smith-Lemli-Opitz syndrome. Lancet. 1993 May 29;341(8857):1414–1414. doi: 10.1016/0140-6736(93)90983-n. [DOI] [PubMed] [Google Scholar]
  14. Kolatsi-Joannou M., Moore R., Winyard P. J., Woolf A. S. Expression of hepatocyte growth factor/scatter factor and its receptor, MET, suggests roles in human embryonic organogenesis. Pediatr Res. 1997 May;41(5):657–665. doi: 10.1203/00006450-199705000-00010. [DOI] [PubMed] [Google Scholar]
  15. Lo Ten Foe J. R., Rooimans M. A., Bosnoyan-Collins L., Alon N., Wijker M., Parker L., Lightfoot J., Carreau M., Callen D. F., Savoia A. Expression cloning of a cDNA for the major Fanconi anaemia gene, FAA. Nat Genet. 1996 Nov;14(3):320–323. doi: 10.1038/ng1196-320. [DOI] [PubMed] [Google Scholar]
  16. Matsell D. G., Bennett T., Armstrong R. A., Goodyer P., Goodyer C., Han V. K. Insulin-like growth factor (IGF) and IGF binding protein gene expression in multicystic renal dysplasia. J Am Soc Nephrol. 1997 Jan;8(1):85–94. doi: 10.1681/ASN.V8185. [DOI] [PubMed] [Google Scholar]
  17. McPherson E., Carey J., Kramer A., Hall J. G., Pauli R. M., Schimke R. N., Tasin M. H. Dominantly inherited renal adysplasia. Am J Med Genet. 1987 Apr;26(4):863–872. doi: 10.1002/ajmg.1320260413. [DOI] [PubMed] [Google Scholar]
  18. Mendelsohn C., Lohnes D., Décimo D., Lufkin T., LeMeur M., Chambon P., Mark M. Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development. 1994 Oct;120(10):2749–2771. doi: 10.1242/dev.120.10.2749. [DOI] [PubMed] [Google Scholar]
  19. Mesrobian H. G., Rushton H. G., Bulas D. Unilateral renal agenesis may result from in utero regression of multicystic renal dysplasia. J Urol. 1993 Aug;150(2 Pt 2):793–794. doi: 10.1016/s0022-5347(17)35615-x. [DOI] [PubMed] [Google Scholar]
  20. Novak R. W., Robinson H. B. Coincident DiGeorge anomaly and renal agenesis and its relation to maternal diabetes. Am J Med Genet. 1994 May 1;50(4):311–312. doi: 10.1002/ajmg.1320500402. [DOI] [PubMed] [Google Scholar]
  21. Pilia G., Hughes-Benzie R. M., MacKenzie A., Baybayan P., Chen E. Y., Huber R., Neri G., Cao A., Forabosco A., Schlessinger D. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet. 1996 Mar;12(3):241–247. doi: 10.1038/ng0396-241. [DOI] [PubMed] [Google Scholar]
  22. Rothenpieler U. W. Roles of Paxgenes in nephrogenesis. Exp Nephrol. 1996 Mar-Apr;4(2):86–91. [PubMed] [Google Scholar]
  23. Rothman K. J., Moore L. L., Singer M. R., Nguyen U. S., Mannino S., Milunsky A. Teratogenicity of high vitamin A intake. N Engl J Med. 1995 Nov 23;333(21):1369–1373. doi: 10.1056/NEJM199511233332101. [DOI] [PubMed] [Google Scholar]
  24. Sanyanusin P., Schimmenti L. A., McNoe L. A., Ward T. A., Pierpont M. E., Sullivan M. J., Dobyns W. B., Eccles M. R. Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat Genet. 1995 Apr;9(4):358–364. doi: 10.1038/ng0495-358. [DOI] [PubMed] [Google Scholar]
  25. Shimozawa N., Tsukamoto T., Suzuki Y., Orii T., Shirayoshi Y., Mori T., Fujiki Y. A human gene responsible for Zellweger syndrome that affects peroxisome assembly. Science. 1992 Feb 28;255(5048):1132–1134. doi: 10.1126/science.1546315. [DOI] [PubMed] [Google Scholar]
  26. Threadgill D. W., Dlugosz A. A., Hansen L. A., Tennenbaum T., Lichti U., Yee D., LaMantia C., Mourton T., Herrup K., Harris R. C. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science. 1995 Jul 14;269(5221):230–234. doi: 10.1126/science.7618084. [DOI] [PubMed] [Google Scholar]
  27. Vesicoureteric reflux: all in the genes? Report of a meeting of physicians at the Hospital for Sick Children, Great Ormond Street, London. Lancet. 1996 Sep 14;348(9029):725–728. [PubMed] [Google Scholar]
  28. Wagner T., Wirth J., Meyer J., Zabel B., Held M., Zimmer J., Pasantes J., Bricarelli F. D., Keutel J., Hustert E. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994 Dec 16;79(6):1111–1120. doi: 10.1016/0092-8674(94)90041-8. [DOI] [PubMed] [Google Scholar]
  29. Wilkie A. O., Slaney S. F., Oldridge M., Poole M. D., Ashworth G. J., Hockley A. D., Hayward R. D., David D. J., Pulleyn L. J., Rutland P. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet. 1995 Feb;9(2):165–172. doi: 10.1038/ng0295-165. [DOI] [PubMed] [Google Scholar]
  30. Winyard P. J., Nauta J., Lirenman D. S., Hardman P., Sams V. R., Risdon R. A., Woolf A. S. Deregulation of cell survival in cystic and dysplastic renal development. Kidney Int. 1996 Jan;49(1):135–146. doi: 10.1038/ki.1996.18. [DOI] [PubMed] [Google Scholar]
  31. Winyard P. J., Risdon R. A., Sams V. R., Dressler G. R., Woolf A. S. The PAX2 tanscription factor is expressed in cystic and hyperproliferative dysplastic epithelia in human kidney malformations. J Clin Invest. 1996 Jul 15;98(2):451–459. doi: 10.1172/JCI118811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Woolf A. S., Cale C. M. Roles of growth factors in renal development. Curr Opin Nephrol Hypertens. 1997 Jan;6(1):10–14. doi: 10.1097/00041552-199701000-00003. [DOI] [PubMed] [Google Scholar]
  33. Zerres K., Mücher G., Bachner L., Deschennes G., Eggermann T., Käriäinen H., Knapp M., Lennert T., Misselwitz J., von Mühlendahl K. E. Mapping of the gene for autosomal recessive polycystic kidney disease (ARPKD) to chromosome 6p21-cen. Nat Genet. 1994 Jul;7(3):429–432. doi: 10.1038/ng0794-429. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood are provided here courtesy of BMJ Publishing Group

RESOURCES