Skip to main content
Archives of Disease in Childhood logoLink to Archives of Disease in Childhood
. 1999 Jun;80(6):524–528. doi: 10.1136/adc.80.6.524

Anthropometry of patients with osteogenesis imperfecta

A Lund 1, J Muller 1, F Skovby 1
PMCID: PMC1717948  PMID: 10332000

Abstract

Standing height, sitting height, armspan, subischial leg length, head circumference, and growth hormone-insulin-like growth factor I (IGF-I) axis were determined in 86 patients with osteogenesis imperfecta. The aim of this study was to determine standing height and body proportions and their variability among osteogenesis imperfecta types and collagen defects. Mean standing height was reduced in all groups of patients, to the greatest extent and variability in osteogenesis imperfecta type III/IV and in those with qualitative collagen defects. The mean standing height of patients with osteogenesis imperfecta was lower than that of their unaffected first degree family members. Truncal height of patients with osteogenesis imperfecta was reduced; head size was increased, and this was more pronounced in patients with osteogenesis imperfecta type III/IV and qualitative collagen defects than in patients with osteogenesis imperfecta type I and quantitative collagen defects. Mean concentrations of IGF-I and IGF binding protein 3 (IGFBP-3) were low, but most values were within age specific reference values. The reduction of standing height appears to correlate with osteogenesis imperfecta type and the type of collagen defect. A relatively short trunk is typical and head circumference and body length are disproportionate.



Full Text

The Full Text of this article is available as a PDF (133.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen E., Hutchings B., Jansen J., Nyholm M. Højde og vaegt hos danske børn. Ugeskr Laeger. 1982 Jun 14;144(24):1760–1765. [PubMed] [Google Scholar]
  2. Antoniazzi F., Bertoldo F., Mottes M., Valli M., Sirpresi S., Zamboni G., Valentini R., Tató L. Growth hormone treatment in osteogenesis imperfecta with quantitative defect of type I collagen synthesis. J Pediatr. 1996 Sep;129(3):432–439. doi: 10.1016/s0022-3476(96)70077-x. [DOI] [PubMed] [Google Scholar]
  3. Charnas L. R., Marini J. C. Communicating hydrocephalus, basilar invagination, and other neurologic features in osteogenesis imperfecta. Neurology. 1993 Dec;43(12):2603–2608. doi: 10.1212/wnl.43.12.2603. [DOI] [PubMed] [Google Scholar]
  4. Dutton R. V. A practical radiologic approach to skeletal dysplasias in infancy. Radiol Clin North Am. 1987 Nov;25(6):1211–1233. [PubMed] [Google Scholar]
  5. Juul A., Bang P., Hertel N. T., Main K., Dalgaard P., Jørgensen K., Müller J., Hall K., Skakkebaek N. E. Serum insulin-like growth factor-I in 1030 healthy children, adolescents, and adults: relation to age, sex, stage of puberty, testicular size, and body mass index. J Clin Endocrinol Metab. 1994 Mar;78(3):744–752. doi: 10.1210/jcem.78.3.8126152. [DOI] [PubMed] [Google Scholar]
  6. Juul A., Dalgaard P., Blum W. F., Bang P., Hall K., Michaelsen K. F., Müller J., Skakkebaek N. E. Serum levels of insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) in healthy infants, children, and adolescents: the relation to IGF-I, IGF-II, IGFBP-1, IGFBP-2, age, sex, body mass index, and pubertal maturation. J Clin Endocrinol Metab. 1995 Aug;80(8):2534–2542. doi: 10.1210/jcem.80.8.7543116. [DOI] [PubMed] [Google Scholar]
  7. Lund A. M., Nicholls A. C., Schwartz M., Skovby F. Parental mosaicism and autosomal dominant mutations causing structural abnormalities of collagen I are frequent in families with osteogenesis imperfecta type III/IV. Acta Paediatr. 1997 Jul;86(7):711–718. doi: 10.1111/j.1651-2227.1997.tb08573.x. [DOI] [PubMed] [Google Scholar]
  8. Lund A. M., Schwartz M., Raghunath M., Steinmann B., Skovby F. Gly802Asp substitution in the pro alpha 2(I) collagen chain in a family with recurrent osteogenesis imperfecta due to paternal mosaicism. Eur J Hum Genet. 1996;4(1):39–45. doi: 10.1159/000472168. [DOI] [PubMed] [Google Scholar]
  9. Lund A. M., Schwartz M., Skovby F. Variable clinical expression in a family with OI type IV due to deletion of three base pairs in COL1A1. Clin Genet. 1996 Nov;50(5):304–309. doi: 10.1111/j.1399-0004.1996.tb02379.x. [DOI] [PubMed] [Google Scholar]
  10. Lund A. M., Skovby F., Schwartz M. Deletion of a Gly-Pro-Pro repeat in the pro alpha2(I) chain of procollagen I in a family with dominant osteogenesis imperfecta type IV. Hum Genet. 1996 Mar;97(3):287–290. doi: 10.1007/BF02185755. [DOI] [PubMed] [Google Scholar]
  11. Lund A. M., Skovby F., Schwartz M. Serine for glycine substitutions in the C-terminal third of the alpha 1(I) chain of collagen I in five patients with nonlethal osteogenesis imperfecta. Hum Mutat. 1997;9(4):378–382. doi: 10.1002/(SICI)1098-1004(1997)9:4<378::AID-HUMU16>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  12. Prader A., Largo R. H., Molinari L., Issler C. Physical growth of Swiss children from birth to 20 years of age. First Zurich longitudinal study of growth and development. Helv Paediatr Acta Suppl. 1989 Jun;52:1–125. [PubMed] [Google Scholar]
  13. Sanguinetti C., Greco F., De Palma L., Specchia N., Falciglia F. Morphological changes in growth-plate cartilage in osteogenesis imperfecta. J Bone Joint Surg Br. 1990 May;72(3):475–479. doi: 10.1302/0301-620X.72B3.2187879. [DOI] [PubMed] [Google Scholar]
  14. Shi S., Kirk M., Kahn A. J. The role of type I collagen in the regulation of the osteoblast phenotype. J Bone Miner Res. 1996 Aug;11(8):1139–1145. doi: 10.1002/jbmr.5650110813. [DOI] [PubMed] [Google Scholar]
  15. Sillence D. O., Senn A., Danks D. M. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet. 1979 Apr;16(2):101–116. doi: 10.1136/jmg.16.2.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Steinmann B., Rao V. H., Vogel A., Bruckner P., Gitzelmann R., Byers P. H. Cysteine in the triple-helical domain of one allelic product of the alpha 1(I) gene of type I collagen produces a lethal form of osteogenesis imperfecta. J Biol Chem. 1984 Sep 10;259(17):11129–11138. [PubMed] [Google Scholar]
  17. Sykes B. Linkage analysis in dominantly inherited osteogenesis imperfecta. Am J Med Genet. 1993 Jan 15;45(2):212–216. doi: 10.1002/ajmg.1320450212. [DOI] [PubMed] [Google Scholar]
  18. Tanner J. M., Whitehouse R. H. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child. 1976 Mar;51(3):170–179. doi: 10.1136/adc.51.3.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Vetter U., Pontz B., Zauner E., Brenner R. E., Spranger J. Osteogenesis imperfecta: a clinical study of the first ten years of life. Calcif Tissue Int. 1992 Jan;50(1):36–41. doi: 10.1007/BF00297295. [DOI] [PubMed] [Google Scholar]
  20. Willing M. C., Deschenes S. P., Scott D. A., Byers P. H., Slayton R. L., Pitts S. H., Arikat H., Roberts E. J. Osteogenesis imperfecta type I: molecular heterogeneity for COL1A1 null alleles of type I collagen. Am J Hum Genet. 1994 Oct;55(4):638–647. [PMC free article] [PubMed] [Google Scholar]
  21. Willing M. C., Deschenes S. P., Slayton R. L., Roberts E. J. Premature chain termination is a unifying mechanism for COL1A1 null alleles in osteogenesis imperfecta type I cell strains. Am J Hum Genet. 1996 Oct;59(4):799–809. [PMC free article] [PubMed] [Google Scholar]
  22. Willing M. C., Pruchno C. J., Atkinson M., Byers P. H. Osteogenesis imperfecta type I is commonly due to a COL1A1 null allele of type I collagen. Am J Hum Genet. 1992 Sep;51(3):508–515. [PMC free article] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood are provided here courtesy of BMJ Publishing Group

RESOURCES