Full Text
The Full Text of this article is available as a PDF (99.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aschinberg L. C., Solomon L. M., Zeis P. M., Justice P., Rosenthal I. M. Vitamin D-resistant rickets associated with epidermal nevus syndrome: demonstration of a phosphaturic substance in the dermal lesions. J Pediatr. 1977 Jul;91(1):56–60. doi: 10.1016/s0022-3476(77)80444-7. [DOI] [PubMed] [Google Scholar]
- Beck L., Karaplis A. C., Amizuka N., Hewson A. S., Ozawa H., Tenenhouse H. S. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5372–5377. doi: 10.1073/pnas.95.9.5372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beck L., Soumounou Y., Martel J., Krishnamurthy G., Gauthier C., Goodyer C. G., Tenenhouse H. S. Pex/PEX tissue distribution and evidence for a deletion in the 3' region of the Pex gene in X-linked hypophosphatemic mice. J Clin Invest. 1997 Mar 15;99(6):1200–1209. doi: 10.1172/JCI119276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cai Q., Hodgson S. F., Kao P. C., Lennon V. A., Klee G. G., Zinsmiester A. R., Kumar R. Brief report: inhibition of renal phosphate transport by a tumor product in a patient with oncogenic osteomalacia. N Engl J Med. 1994 Jun 9;330(23):1645–1649. doi: 10.1056/NEJM199406093302304. [DOI] [PubMed] [Google Scholar]
- Carpenter T. O. New perspectives on the biology and treatment of X-linked hypophosphatemic rickets. Pediatr Clin North Am. 1997 Apr;44(2):443–466. doi: 10.1016/s0031-3955(05)70485-5. [DOI] [PubMed] [Google Scholar]
- Chalew S. A., Lovchik J. C., Brown C. M., Sun C. C. Hypophosphatemia induced in mice by transplantation of a tumor-derived cell line from a patient with oncogenic rickets. J Pediatr Endocrinol Metab. 1996 Nov-Dec;9(6):593–597. doi: 10.1515/jpem.1996.9.6.593. [DOI] [PubMed] [Google Scholar]
- Dixon P. H., Christie P. T., Wooding C., Trump D., Grieff M., Holm I., Gertner J. M., Schmidtke J., Shah B., Shaw N. Mutational analysis of PHEX gene in X-linked hypophosphatemia. J Clin Endocrinol Metab. 1998 Oct;83(10):3615–3623. doi: 10.1210/jcem.83.10.5180. [DOI] [PubMed] [Google Scholar]
- Drezner M. K. The role of abnormal vitamin D metabolism in X-linked hypophosphatemic rickets and osteomalacia. Adv Exp Med Biol. 1984;178:399–404. doi: 10.1007/978-1-4684-4808-5_48. [DOI] [PubMed] [Google Scholar]
- Ecarot-Charrier B., Glorieux F. H., Travers R., Desbarats M., Bouchard F., Hinek A. Defective bone formation by transplanted Hyp mouse bone cells into normal mice. Endocrinology. 1988 Aug;123(2):768–773. doi: 10.1210/endo-123-2-768. [DOI] [PubMed] [Google Scholar]
- Ecarot B., Desbarats M. 1,25-(OH)2D3 down-regulates expression of Phex, a marker of the mature osteoblast. Endocrinology. 1999 Mar;140(3):1192–1199. doi: 10.1210/endo.140.3.6593. [DOI] [PubMed] [Google Scholar]
- Ecarot B., Glorieux F. H., Desbarats M., Travers R., Labelle L. Defective bone formation by Hyp mouse bone cells transplanted into normal mice: evidence in favor of an intrinsic osteoblast defect. J Bone Miner Res. 1992 Feb;7(2):215–220. doi: 10.1002/jbmr.5650070213. [DOI] [PubMed] [Google Scholar]
- Ecarot B., Glorieux F. H., Desbarats M., Travers R., Labelle L. Effect of 1,25-dihydroxyvitamin D3 treatment on bone formation by transplanted cells from normal and X-linked hypophosphatemic mice. J Bone Miner Res. 1995 Mar;10(3):424–431. doi: 10.1002/jbmr.5650100313. [DOI] [PubMed] [Google Scholar]
- Econs M. J., Friedman N. E., Rowe P. S., Speer M. C., Francis F., Strom T. M., Oudet C., Smith J. A., Ninomiya J. T., Lee B. E. A PHEX gene mutation is responsible for adult-onset vitamin D-resistant hypophosphatemic osteomalacia: evidence that the disorder is not a distinct entity from X-linked hypophosphatemic rickets. J Clin Endocrinol Metab. 1998 Oct;83(10):3459–3462. doi: 10.1210/jcem.83.10.5167. [DOI] [PubMed] [Google Scholar]
- Eicher E. M., Southard J. L., Scriver C. R., Glorieux F. H. Hypophosphatemia: mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4667–4671. doi: 10.1073/pnas.73.12.4667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feild J. A., Zhang L., Brun K. A., Brooks D. P., Edwards R. M. Cloning and functional characterization of a sodium-dependent phosphate transporter expressed in human lung and small intestine. Biochem Biophys Res Commun. 1999 May 19;258(3):578–582. doi: 10.1006/bbrc.1999.0666. [DOI] [PubMed] [Google Scholar]
- Filisetti D., Ostermann G., von Bredow M., Strom T., Filler G., Ehrich J., Pannetier S., Garnier J. M., Rowe P., Francis F. Non-random distribution of mutations in the PHEX gene, and under-detected missense mutations at non-conserved residues. Eur J Hum Genet. 1999 Jul;7(5):615–619. doi: 10.1038/sj.ejhg.5200341. [DOI] [PubMed] [Google Scholar]
- Francis F., Strom T. M., Hennig S., Böddrich A., Lorenz B., Brandau O., Mohnike K. L., Cagnoli M., Steffens C., Klages S. Genomic organization of the human PEX gene mutated in X-linked dominant hypophosphatemic rickets. Genome Res. 1997 Jun;7(6):573–585. doi: 10.1101/gr.7.6.573. [DOI] [PubMed] [Google Scholar]
- Grieff M., Mumm S., Waeltz P., Mazzarella R., Whyte M. P., Thakker R. V., Schlessinger D. Expression and cloning of the human X-linked hypophosphatemia gene cDNA. Biochem Biophys Res Commun. 1997 Feb 24;231(3):635–639. doi: 10.1006/bbrc.1997.6153. [DOI] [PubMed] [Google Scholar]
- Hilfiker H., Hattenhauer O., Traebert M., Forster I., Murer H., Biber J. Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14564–14569. doi: 10.1073/pnas.95.24.14564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holm I. A., Huang X., Kunkel L. M. Mutational analysis of the PEX gene in patients with X-linked hypophosphatemic rickets. Am J Hum Genet. 1997 Apr;60(4):790–797. [PMC free article] [PubMed] [Google Scholar]
- Kumar R., Haugen J. D., Wieben E. D., Londowski J. M., Cai Q. Inhibitors of renal epithelial phosphate transport in tumor-induced osteomalacia and uremia. Proc Assoc Am Physicians. 1995 Oct;107(3):296–305. [PubMed] [Google Scholar]
- Lipman M. L., Panda D., Bennett H. P., Henderson J. E., Shane E., Shen Y., Goltzman D., Karaplis A. C. Cloning of human PEX cDNA. Expression, subcellular localization, and endopeptidase activity. J Biol Chem. 1998 May 29;273(22):13729–13737. doi: 10.1074/jbc.273.22.13729. [DOI] [PubMed] [Google Scholar]
- Lyon M. F., Scriver C. R., Baker L. R., Tenenhouse H. S., Kronick J., Mandla S. The Gy mutation: another cause of X-linked hypophosphatemia in mouse. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4899–4903. doi: 10.1073/pnas.83.13.4899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyauchi A., Fukase M., Tsutsumi M., Fujita T. Hemangiopericytoma-induced osteomalacia: tumor transplantation in nude mice causes hypophosphatemia and tumor extracts inhibit renal 25-hydroxyvitamin D 1-hydroxylase activity. J Clin Endocrinol Metab. 1988 Jul;67(1):46–53. doi: 10.1210/jcem-67-1-46. [DOI] [PubMed] [Google Scholar]
- Nelson A. E., Namkung H. J., Patava J., Wilkinson M. R., Chang A. C., Reddel R. R., Robinson B. G., Mason R. S. Characteristics of tumor cell bioactivity in oncogenic osteomalacia. Mol Cell Endocrinol. 1996 Nov 29;124(1-2):17–23. doi: 10.1016/s0303-7207(96)03928-7. [DOI] [PubMed] [Google Scholar]
- Nelson A. E., Robinson B. G., Mason R. S. Oncogenic osteomalacia: is there a new phosphate regulating hormone? Clin Endocrinol (Oxf) 1997 Dec;47(6):635–642. doi: 10.1046/j.1365-2265.1997.3591138.x. [DOI] [PubMed] [Google Scholar]
- Nitzan D. W., Horowitz A. T., Darmon D., Friedlaender M. M., Rubinger D., Stein P., Bab I., Popovtzer M. M., Silver J. Oncogenous osteomalacia: a case study. Bone Miner. 1989 May;6(2):191–197. doi: 10.1016/0169-6009(89)90050-0. [DOI] [PubMed] [Google Scholar]
- Rifas L., Cheng S., Halstead L. R., Gupta A., Hruska K. A., Avioli L. V. Skeletal casein kinase activity defect in the HYP mouse. Calcif Tissue Int. 1997 Sep;61(3):256–259. doi: 10.1007/s002239900331. [DOI] [PubMed] [Google Scholar]
- Rifas L., Gupta A., Hruska K. A., Avioli L. V. Altered osteoblast gluconeogenesis in X-linked hypophosphatemic mice is associated with a depressed intracellular pH. Calcif Tissue Int. 1995 Jul;57(1):60–63. doi: 10.1007/BF00298998. [DOI] [PubMed] [Google Scholar]
- Rowe P. S., Goulding J. N., Francis F., Oudet C., Econs M. J., Hanauer A., Lehrach H., Read A. P., Mountford R. C., Summerfield T. The gene for X-linked hypophosphataemic rickets maps to a 200-300kb region in Xp22.1, and is located on a single YAC containing a putative vitamin D response element (VDRE). Hum Genet. 1996 Mar;97(3):345–352. doi: 10.1007/BF02185769. [DOI] [PubMed] [Google Scholar]
- Rowe P. S. Molecular biology of hypophosphataemic rickets and oncogenic osteomalacia. Hum Genet. 1994 Nov;94(5):457–467. doi: 10.1007/BF00211008. [DOI] [PubMed] [Google Scholar]
- Rowe P. S., Ong A. C., Cockerill F. J., Goulding J. N., Hewison M. Candidate 56 and 58 kDa protein(s) responsible for mediating the renal defects in oncogenic hypophosphatemic osteomalacia. Bone. 1996 Feb;18(2):159–169. doi: 10.1016/8756-3282(95)00458-0. [DOI] [PubMed] [Google Scholar]
- Rowe P. S., Oudet C. L., Francis F., Sinding C., Pannetier S., Econs M. J., Strom T. M., Meitinger T., Garabedian M., David A. Distribution of mutations in the PEX gene in families with X-linked hypophosphataemic rickets (HYP). Hum Mol Genet. 1997 Apr;6(4):539–549. doi: 10.1093/hmg/6.4.539. [DOI] [PubMed] [Google Scholar]
- Rowe P. S. The PEX gene: its role in X-linked rickets, osteomalacia, and bone mineral metabolism. Exp Nephrol. 1997 Sep-Oct;5(5):355–363. [PubMed] [Google Scholar]
- Rowe P. S. The role of the PHEX gene (PEX) in families with X-linked hypophosphataemic rickets. Curr Opin Nephrol Hypertens. 1998 Jul;7(4):367–376. doi: 10.1097/00041552-199807000-00004. [DOI] [PubMed] [Google Scholar]
- Rowe P. S., de Zoysa P. A., Dong R., Wang H. R., White K. E., Econs M. J., Oudet C. L. MEPE, a new gene expressed in bone marrow and tumors causing osteomalacia. Genomics. 2000 Jul 1;67(1):54–68. doi: 10.1006/geno.2000.6235. [DOI] [PubMed] [Google Scholar]
- Roy S., Tenenhouse H. S. Transcriptional regulation and renal localization of 1,25-dihydroxyvitamin D3-24-hydroxylase gene expression: effects of the Hyp mutation and 1,25-dihydroxyvitamin D3. Endocrinology. 1996 Jul;137(7):2938–2946. doi: 10.1210/endo.137.7.8770917. [DOI] [PubMed] [Google Scholar]
- Ruchon A. F., Marcinkiewicz M., Siegfried G., Tenenhouse H. S., DesGroseillers L., Crine P., Boileau G. Pex mRNA is localized in developing mouse osteoblasts and odontoblasts. J Histochem Cytochem. 1998 Apr;46(4):459–468. doi: 10.1177/002215549804600405. [DOI] [PubMed] [Google Scholar]
- Strom T. M., Francis F., Lorenz B., Böddrich A., Econs M. J., Lehrach H., Meitinger T. Pex gene deletions in Gy and Hyp mice provide mouse models for X-linked hypophosphatemia. Hum Mol Genet. 1997 Feb;6(2):165–171. doi: 10.1093/hmg/6.2.165. [DOI] [PubMed] [Google Scholar]
- Takeda E., Taketani Y., Morita K., Miyamoto K. Sodium-dependent phosphate co-transporters. Int J Biochem Cell Biol. 1999 Mar-Apr;31(3-4):377–381. doi: 10.1016/s1357-2725(98)00124-1. [DOI] [PubMed] [Google Scholar]
- Taketani Y., Segawa H., Chikamori M., Morita K., Tanaka K., Kido S., Yamamoto H., Iemori Y., Tatsumi S., Tsugawa N. Regulation of type II renal Na+-dependent inorganic phosphate transporters by 1,25-dihydroxyvitamin D3. Identification of a vitamin D-responsive element in the human NAPi-3 gene. J Biol Chem. 1998 Jun 5;273(23):14575–14581. doi: 10.1074/jbc.273.23.14575. [DOI] [PubMed] [Google Scholar]
- Tanaka H., Seino Y., Shima M., Yamaoka K., Yabuuchi H., Yoshikawa H., Masuhara K., Takaoka K., Ono K. Effect of phosphorus supplementation on bone formation induced by osteosarcoma-derived bone-inducing substance in X-linked hypophosphatemic mice. Bone Miner. 1988 Jul;4(3):237–246. [PubMed] [Google Scholar]
- Tatsumi S., Miyamoto K., Kouda T., Motonaga K., Katai K., Ohkido I., Morita K., Segawa H., Tani Y., Yamamoto H. Identification of three isoforms for the Na+-dependent phosphate cotransporter (NaPi-2) in rat kidney. J Biol Chem. 1998 Oct 30;273(44):28568–28575. doi: 10.1074/jbc.273.44.28568. [DOI] [PubMed] [Google Scholar]
- Tenenhouse H. S., Beck L. Renal Na(+)-phosphate cotransporter gene expression in X-linked Hyp and Gy mice. Kidney Int. 1996 Apr;49(4):1027–1032. doi: 10.1038/ki.1996.149. [DOI] [PubMed] [Google Scholar]
- Tenenhouse H. S. Cellular and molecular mechanisms of renal phosphate transport. J Bone Miner Res. 1997 Feb;12(2):159–164. doi: 10.1359/jbmr.1997.12.2.159. [DOI] [PubMed] [Google Scholar]
- Tenenhouse H. S. Recent advances in epithelial sodium-coupled phosphate transport. Curr Opin Nephrol Hypertens. 1999 Jul;8(4):407–414. doi: 10.1097/00041552-199907000-00003. [DOI] [PubMed] [Google Scholar]
- Tenenhouse H. S., Roy S., Martel J., Gauthier C. Differential expression, abundance, and regulation of Na+-phosphate cotransporter genes in murine kidney. Am J Physiol. 1998 Oct;275(4 Pt 2):F527–F534. doi: 10.1152/ajprenal.1998.275.4.F527. [DOI] [PubMed] [Google Scholar]
- Tenenhouse H. S., Werner A., Biber J., Ma S., Martel J., Roy S., Murer H. Renal Na(+)-phosphate cotransport in murine X-linked hypophosphatemic rickets. Molecular characterization. J Clin Invest. 1994 Feb;93(2):671–676. doi: 10.1172/JCI117019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tenenhouse H. S. X-linked hypophosphataemia: a homologous disorder in humans and mice. Nephrol Dial Transplant. 1999 Feb;14(2):333–341. doi: 10.1093/ndt/14.2.333. [DOI] [PubMed] [Google Scholar]
- Yamamoto T., Ecarot B., Glorieux F. H. Abnormal response of osteoblasts from Hyp mice to 1,25-dihydroxyvitamin D3. Bone. 1992;13(3):209–215. doi: 10.1016/8756-3282(92)90199-7. [DOI] [PubMed] [Google Scholar]
- Yamaoka K., Seino Y., Satomura K., Tanaka Y., Yabuuchi H., Haussler M. R. Abnormal relationship between serum phosphate concentration and renal 25-hydroxycholecalciferol-1-alpha-hydroxylase activity in X-linked hypophosphatemic mice. Miner Electrolyte Metab. 1986;12(3):194–198. [PubMed] [Google Scholar]
- Yoshikawa H., Masuhara K., Takaoka K., Ono K., Tanaka H., Seino Y. Abnormal bone formation induced by implantation of osteosarcoma-derived bone-inducing substance in the X-linked hypophosphatemic mouse. Bone. 1985;6(4):235–239. doi: 10.1016/8756-3282(85)90006-7. [DOI] [PubMed] [Google Scholar]
- Zhu X., Luo C., Ferrier J. M., Sodek J. Evidence of ectokinase-mediated phosphorylation of osteopontin and bone sialoprotein by osteoblasts during bone formation in vitro. Biochem J. 1997 May 1;323(Pt 3):637–643. doi: 10.1042/bj3230637. [DOI] [PMC free article] [PubMed] [Google Scholar]