Abstract
AIMS—To examine the relation between birth weight and cognitive function at age 11 years, and to examine whether this relation is independent of social class. METHODS—Retrospective cohort study based on birth records from 1921 and cognitive function measured while at school at age 11 in 1932.Subjects were 985 live singletons born in the Edinburgh Royal Maternity and Simpson Memorial Hospital in 1921. Moray House Test scores from the Scottish Mental Survey 1932 were traced on 449of these children. RESULTS—Mean score on Moray House Test increased from 30.6 at a birth weight of <2500 g to 44.7 at 4001-4500 g, after correcting for gestational age, maternal age, parity, social class, and legitimacy of birth. Multiple regression showed that 15.6% of the variance in Moray House Test score is contributed by a combination of social class (6.6%), birth weight (3.8%), child's exact age (2.4%), maternal parity (2.0%), and illegitimacy (1.5%). Structural equation modelling confirmed the independent contribution from each of these variables in predicting cognitive ability. A model in which birth weight acted as a mediator of social class had poor fit statistics. CONCLUSION—In this 1921 birth cohort, social class and birth weight have independent effects on cognitive function at age 11. Future research will relate these childhood data to health and cognition in old age.
Full Text
The Full Text of this article is available as a PDF (204.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barker D. J. Maternal nutrition, fetal nutrition, and disease in later life. Nutrition. 1997 Sep;13(9):807–813. doi: 10.1016/s0899-9007(97)00193-7. [DOI] [PubMed] [Google Scholar]
- Bartley M., Power C., Blane D., Smith G. D., Shipley M. Birth weight and later socioeconomic disadvantage: evidence from the 1958 British cohort study. BMJ. 1994 Dec 3;309(6967):1475–1478. doi: 10.1136/bmj.309.6967.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baxter-Jones A. D., Cardy A. H., Helms P. J., Phillips D. O., Smith W. C. Influence of socioeconomic conditions on growth in infancy: the 1921 Aberdeen birth cohort. Arch Dis Child. 1999 Jul;81(1):5–9. doi: 10.1136/adc.81.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bouchard T. J., Jr Genetic and environmental influences on adult intelligence and special mental abilities. Hum Biol. 1998 Apr;70(2):257–279. [PubMed] [Google Scholar]
- Drillien C. M. The incidence of mental and physical handicaps in school age children of very low birth weight. II. Pediatrics. 1967 Feb;39(2):238–247. [PubMed] [Google Scholar]
- Fall C. H., Vijayakumar M., Barker D. J., Osmond C., Duggleby S. Weight in infancy and prevalence of coronary heart disease in adult life. BMJ. 1995 Jan 7;310(6971):17–19. doi: 10.1136/bmj.310.6971.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hack M. Effects of intrauterine growth retardation on mental performance and behavior, outcomes during adolescence and adulthood. Eur J Clin Nutr. 1998 Jan;52 (Suppl 1):S65–S71. [PubMed] [Google Scholar]
- Hutton J. L., Pharoah P. O., Cooke R. W., Stevenson R. C. Differential effects of preterm birth and small gestational age on cognitive and motor development. Arch Dis Child Fetal Neonatal Ed. 1997 Mar;76(2):F75–F81. doi: 10.1136/fn.76.2.f75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hutton J. L., Pharoah P. O., Cooke R. W., Stevenson R. C. Differential effects of preterm birth and small gestational age on cognitive and motor development. Arch Dis Child Fetal Neonatal Ed. 1997 Mar;76(2):F75–F81. doi: 10.1136/fn.76.2.f75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joseph K. S., Kramer M. S. Review of the evidence on fetal and early childhood antecedents of adult chronic disease. Epidemiol Rev. 1996;18(2):158–174. doi: 10.1093/oxfordjournals.epirev.a017923. [DOI] [PubMed] [Google Scholar]
- Kramer M. S., Séguin L., Lydon J., Goulet L. Socio-economic disparities in pregnancy outcome: why do the poor fare so poorly? Paediatr Perinat Epidemiol. 2000 Jul;14(3):194–210. doi: 10.1046/j.1365-3016.2000.00266.x. [DOI] [PubMed] [Google Scholar]
- Lanting C. I., Fidler V., Huisman M., Touwen B. C., Boersma E. R. Neurological differences between 9-year-old children fed breast-milk or formula-milk as babies. Lancet. 1994 Nov 12;344(8933):1319–1322. doi: 10.1016/s0140-6736(94)90692-0. [DOI] [PubMed] [Google Scholar]
- Lloyd B. W., Wheldall K., Perks D. Controlled study of intelligence and school performance of very low-birthweight children from a defined geographical area. Dev Med Child Neurol. 1988 Feb;30(1):36–42. doi: 10.1111/j.1469-8749.1988.tb04724.x. [DOI] [PubMed] [Google Scholar]
- Macintyre S. The Black Report and beyond: what are the issues? Soc Sci Med. 1997 Mar;44(6):723–745. doi: 10.1016/s0277-9536(96)00183-9. [DOI] [PubMed] [Google Scholar]
- Martyn C. N., Gale C. R., Sayer A. A., Fall C. Growth in utero and cognitive function in adult life: follow up study of people born between 1920 and 1943. BMJ. 1996 Jun 1;312(7043):1393–1396. doi: 10.1136/bmj.312.7043.1393a. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martyn C. N., Gale C. R., Sayer A. A., Fall C. Growth in utero and cognitive function in adult life: follow up study of people born between 1920 and 1943. BMJ. 1996 Jun 1;312(7043):1393–1396. doi: 10.1136/bmj.312.7043.1393a. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore V. M., Miller A. G., Boulton T. J., Cockington R. A., Craig I. H., Magarey A. M., Robinson J. S. Placental weight, birth measurements, and blood pressure at age 8 years. Arch Dis Child. 1996 Jun;74(6):538–541. doi: 10.1136/adc.74.6.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgane P. J., Austin-LaFrance R., Bronzino J., Tonkiss J., Díaz-Cintra S., Cintra L., Kemper T., Galler J. R. Prenatal malnutrition and development of the brain. Neurosci Biobehav Rev. 1993 Spring;17(1):91–128. doi: 10.1016/s0149-7634(05)80234-9. [DOI] [PubMed] [Google Scholar]
- Pharoah P. O., Stevenson C. J., Cooke R. W., Stevenson R. C. Clinical and subclinical deficits at 8 years in a geographically defined cohort of low birthweight infants. Arch Dis Child. 1994 Apr;70(4):264–270. doi: 10.1136/adc.70.4.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richards M., Hardy R., Kuh D., Wadsworth M. E. Birth weight and cognitive function in the British 1946 birth cohort: longitudinal population based study. BMJ. 2001 Jan 27;322(7280):199–203. doi: 10.1136/bmj.322.7280.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seidman D. S., Laor A., Gale R., Stevenson D. K., Mashiach S., Danon Y. L. Birth weight and intellectual performance in late adolescence. Obstet Gynecol. 1992 Apr;79(4):543–546. [PubMed] [Google Scholar]
- Smith A. E., Knight-Jones E. B. The abilities of very low-birthweight children and their classroom controls. Dev Med Child Neurol. 1990 Jul;32(7):590–601. doi: 10.1111/j.1469-8749.1990.tb08543.x. [DOI] [PubMed] [Google Scholar]
- Sørensen H. T., Sabroe S., Olsen J., Rothman K. J., Gillman M. W., Fischer P. Birth weight and cognitive function in young adult life: historical cohort study. BMJ. 1997 Aug 16;315(7105):401–403. doi: 10.1136/bmj.315.7105.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sørensen H. T., Sabroe S., Olsen J., Rothman K. J., Gillman M. W., Fischer P. Birth weight and cognitive function in young adult life: historical cohort study. BMJ. 1997 Aug 16;315(7105):401–403. doi: 10.1136/bmj.315.7105.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiener G. The relationship of birth weight and length of gestation to intellectual development at ages 8 to 10 years. J Pediatr. 1970 May;76(5):694–699. doi: 10.1016/s0022-3476(70)80286-4. [DOI] [PubMed] [Google Scholar]