Skip to main content
Archives of Disease in Childhood logoLink to Archives of Disease in Childhood
. 2002 Jan;86(1):30–33. doi: 10.1136/adc.86.1.30

Dyslexia and familial high blood pressure: an observational pilot study

K Taylor 1, J Stein 1
PMCID: PMC1719045  PMID: 11806878

Abstract

Background: Developmental dyslexia is a neurodevelopmental learning disability characterised by unexpectedly poor reading and unknown aetiology. One hypothesis proposes excessive platelet activating factor, a potent vasodilator, as a contributor, implying that there should be a negative association between dyslexia and high blood pressure (HBP). Since both conditions have a partial genetic basis, this association may be apparent at the familial level.

Aims: To test this prediction in dyslexic and non-dyslexic children.

Methods: Individuals and families with (HBP+) and without (HBP-) a family history of HBP were compared.

Results: Proportionately fewer dyslexics (49/112) than controls (11/12) were HBP+. Families with multiple, all dyslexic children were less likely to be HBP+ (7/16) than those with a non-dyslexic child (11/11). Within families, mean child scores on reading were higher in the HBP+ group (mean 44.3, SE 0.95) than in the HBP- group (mean 40.3, SE 0.87).

Conclusion: HBP+ family history is associated with better performance on reading. The prediction of a negative association between dyslexic status and familial high blood pressure is therefore confirmed.

Full Text

The Full Text of this article is available as a PDF (84.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrantes F. J. Structural-functional correlates of the nicotinic acetylcholine receptor and its lipid microenvironment. FASEB J. 1993 Dec;7(15):1460–1467. doi: 10.1096/fasebj.7.15.8262330. [DOI] [PubMed] [Google Scholar]
  2. Bazan N. G., Allan G. Platelet-activating factor in the modulation of excitatory amino acid neurotransmitter release and of gene expression. J Lipid Mediat Cell Signal. 1996 Sep;14(1-3):321–330. doi: 10.1016/0929-7855(96)00541-x. [DOI] [PubMed] [Google Scholar]
  3. Bleeker W. K., Teeling J. L., Verhoeven A. J., Rigter G. M., Agterberg J., Tool A. T., Koenderman A. H., Kuijpers T. W., Hack C. E. Vasoactive side effects of intravenous immunoglobulin preparations in a rat model and their treatment with recombinant platelet-activating factor acetylhydrolase. Blood. 2000 Mar 1;95(5):1856–1861. [PubMed] [Google Scholar]
  4. Castles A., Datta H., Gayan J., Olson R. K. Varieties of developmental reading disorder: genetic and environmental influences. J Exp Child Psychol. 1999 Feb;72(2):73–94. doi: 10.1006/jecp.1998.2482. [DOI] [PubMed] [Google Scholar]
  5. Doucet J. P., Bazan N. G. Excitable membranes, lipid messengers, and immediate-early genes. Alteration of signal transduction in neuromodulation and neurotrauma. Mol Neurobiol. 1992 Winter;6(4):407–424. doi: 10.1007/BF02757944. [DOI] [PubMed] [Google Scholar]
  6. Eden G. F., VanMeter J. W., Rumsey J. M., Maisog J. M., Woods R. P., Zeffiro T. A. Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature. 1996 Jul 4;382(6586):66–69. doi: 10.1038/382066a0. [DOI] [PubMed] [Google Scholar]
  7. Fisher S. E., Marlow A. J., Lamb J., Maestrini E., Williams D. F., Richardson A. J., Weeks D. E., Stein J. F., Monaco A. P. A quantitative-trait locus on chromosome 6p influences different aspects of developmental dyslexia. Am J Hum Genet. 1999 Jan;64(1):146–156. doi: 10.1086/302190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fisher S. E., Stein J. F., Monaco A. P. A genome-wide search strategy for identifying quantitative trait loci involved in reading and spelling disability (developmental dyslexia). Eur Child Adolesc Psychiatry. 1999;8 (Suppl 3):47–51. doi: 10.1007/pl00010694. [DOI] [PubMed] [Google Scholar]
  9. Galaburda A. M. Neuroanatomic basis of developmental dyslexia. Neurol Clin. 1993 Feb;11(1):161–173. [PubMed] [Google Scholar]
  10. Gayán J., Olson R. K. Reading disability: evidence for a genetic etiology. Eur Child Adolesc Psychiatry. 1999;8 (Suppl 3):52–55. doi: 10.1007/pl00010695. [DOI] [PubMed] [Google Scholar]
  11. Gelband C. H., Katovich M. J., Raizada M. K. Current perspectives on the use of gene therapy for hypertension. Circ Res. 2000 Dec 8;87(12):1118–1122. doi: 10.1161/01.res.87.12.1118. [DOI] [PubMed] [Google Scholar]
  12. Gilger J. W., Pennington B. F., Harbeck R. J., DeFries J. C., Kotzin B., Green P., Smith S. A twin and family study of the association between immune system dysfunction and dyslexia using blood serum immunoassay and survey data. Brain Cogn. 1998 Apr;36(3):310–333. doi: 10.1006/brcg.1997.0972. [DOI] [PubMed] [Google Scholar]
  13. Horrobin D. F., Glen A. I., Hudson C. J. Possible relevance of phospholipid abnormalities and genetic interactions in psychiatric disorders: the relationship between dyslexia and schizophrenia. Med Hypotheses. 1995 Dec;45(6):605–613. doi: 10.1016/0306-9877(95)90246-5. [DOI] [PubMed] [Google Scholar]
  14. Horrobin D. F. Schizophrenia as a membrane lipid disorder which is expressed throughout the body. Prostaglandins Leukot Essent Fatty Acids. 1996 Aug;55(1-2):3–7. doi: 10.1016/s0952-3278(96)90138-6. [DOI] [PubMed] [Google Scholar]
  15. Hugdahl K. The search continues: casual relationships among dyslexia, anomalous dominance, and immune function. Brain Cogn. 1994 Nov;26(2):275–280. doi: 10.1006/brcg.1994.1062. [DOI] [PubMed] [Google Scholar]
  16. Lahita R. G. Systemic lupus erythematosus: learning disability in the male offspring of female patients and relationship to laterality. Psychoneuroendocrinology. 1988;13(5):385–396. doi: 10.1016/0306-4530(88)90045-5. [DOI] [PubMed] [Google Scholar]
  17. MacFaul R., Werneke U. Recent trends in hospital use by children in England. Arch Dis Child. 2001 Sep;85(3):203–207. doi: 10.1136/adc.85.3.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Minshew N. J., Goldstein G., Dombrowski S. M., Panchalingam K., Pettegrew J. W. A preliminary 31P MRS study of autism: evidence for undersynthesis and increased degradation of brain membranes. Biol Psychiatry. 1993 Jun 1;33(11-12):762–773. doi: 10.1016/0006-3223(93)90017-8. [DOI] [PubMed] [Google Scholar]
  19. Oddie S., Richmond S., Coulthard M. Hypernatraemic dehydration and breast feeding: a population study. Arch Dis Child. 2001 Oct;85(4):318–320. doi: 10.1136/adc.85.4.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Patel L., Wales J. K., Kibirige M. S., Massarano A. A., Couriel J. M., Clayton P. E. Symptomatic adrenal insufficiency during inhaled corticosteroid treatment. Arch Dis Child. 2001 Oct;85(4):330–334. doi: 10.1136/adc.85.4.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pennington B. F. Genetics of learning disabilities. J Child Neurol. 1995 Jan;10 (Suppl 1):S69–S77. doi: 10.1177/08830738950100S114. [DOI] [PubMed] [Google Scholar]
  22. Richardson A. J., Cox I. J., Sargentoni J., Puri B. K. Abnormal cerebral phospholipid metabolism in dyslexia indicated by phosphorus-31 magnetic resonance spectroscopy. NMR Biomed. 1997 Oct;10(7):309–314. doi: 10.1002/(sici)1099-1492(199710)10:7<309::aid-nbm484>3.0.co;2-0. [DOI] [PubMed] [Google Scholar]
  23. Stanimirovic D., Satoh K. Inflammatory mediators of cerebral endothelium: a role in ischemic brain inflammation. Brain Pathol. 2000 Jan;10(1):113–126. doi: 10.1111/j.1750-3639.2000.tb00248.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Taylor K. E., Higgins C. J., Calvin C. M., Hall J. A., Easton T., McDaid A. M., Richardson A. J. Dyslexia in adults is associated with clinical signs of fatty acid deficiency. Prostaglandins Leukot Essent Fatty Acids. 2000 Jul-Aug;63(1-2):75–78. doi: 10.1054/plef.2000.0195. [DOI] [PubMed] [Google Scholar]
  25. Taylor K. E., Richardson A. J., Stein J. F. Could platelet activating factor play a role in developmental dyslexia? Prostaglandins Leukot Essent Fatty Acids. 2001 Mar;64(3):173–180. doi: 10.1054/plef.2001.0258. [DOI] [PubMed] [Google Scholar]
  26. Tønnessen F. E., Løkken A., Høien T., Lundberg I. Dyslexia, left-handedness, and immune disorders. Arch Neurol. 1993 Apr;50(4):411–416. doi: 10.1001/archneur.1993.00540040063016. [DOI] [PubMed] [Google Scholar]
  27. Wood L. C., Cooper D. S. Autoimmune thyroid disease, left-handedness, and developmental dyslexia. Psychoneuroendocrinology. 1992;17(1):95–99. doi: 10.1016/0306-4530(92)90080-q. [DOI] [PubMed] [Google Scholar]
  28. Wu R., Lemne C., De Faire U., Frostegârd J. Antibodies to platelet-activating factor are associated with borderline hypertension, early atherosclerosis and the metabolic syndrome. J Intern Med. 1999 Oct;246(4):389–397. doi: 10.1046/j.1365-2796.1999.00570.x. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood are provided here courtesy of BMJ Publishing Group

RESOURCES