Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1990 Nov;34(11):2065–2069. doi: 10.1128/aac.34.11.2065

Inhibition of Pseudomonas aeruginosa elastase and Pseudomonas keratitis using a thiol-based peptide.

F R Burns 1, C A Paterson 1, R D Gray 1, J T Wells 1
PMCID: PMC172000  PMID: 2127341

Abstract

Pseudomonas aeruginosa elastase is a zinc metalloproteinase which is released during P. aeruginosa infections. Pseudomonas keratitis, which occurs following contact lens-induced corneal trauma, can lead to rapid, liquefactive necrosis of the cornea. This destruction has been attributed to the release of both host-derived enzymes and the bacterial products P. aeruginosa elastase, alkaline protease, exotoxin A, and lipopolysaccharide endotoxin. A synthetic metalloproteinase inhibitor, HSCH2 (DL)CH[CH2CH(CH3)2]CO-Phe-Ala-NH2, which we previously showed to be a potent inhibitor of corneal collagenase and alkali-induced corneal ulceration, was tested as a potential inhibitor of P. aeruginosa elastase. Inhibition constants (Kis) for the resolved diastereomers were determined with the chromogenic substrate furylacryloyl-glycyl-L-leucyl-L-alanine. One isomer had a Ki of 0.3 microM, while the other had a Ki of 0.4 microM. The more potent diastereomer was evaluated in vivo in experimentally induced Pseudomonas keratitis in rabbits. Following inoculation of one cornea of each rabbit, topical treatment with a 1 mM solution of the inhibitor significantly delayed the onset of corneal melting and perforation, as compared with the results for the control and gentamicin-treated groups. This protective effect suggests that the inhibitor may have a therapeutic application by delaying the progression of corneal destruction in Pseudomonas keratitis.

Full text

PDF
2065

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berk R. S., Iglewski B. H., Hazlett L. D. Age-related susceptibility of mice to ocular challenge with Pseudomonas aeruginosa exotoxin A. Infect Immun. 1981 Jul;33(1):90–94. doi: 10.1128/iai.33.1.90-94.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blumberg S., Vallee B. L. Superactivation of thermolysin by acylation with amino acid N-hydroxysuccinimide esters. Biochemistry. 1975 Jun 3;14(11):2410–2419. doi: 10.1021/bi00682a022. [DOI] [PubMed] [Google Scholar]
  3. Brown S. I., Bloomfield S. E., Tam W. The cornea-destroying enzyme of Pseudomonas aeruginosa. Invest Ophthalmol. 1974 Mar;13(3):174–180. [PubMed] [Google Scholar]
  4. Burns F. R., Gray R. D., Paterson C. A. Inhibition of alkali-induced corneal ulceration and perforation by a thiol peptide. Invest Ophthalmol Vis Sci. 1990 Jan;31(1):107–114. [PubMed] [Google Scholar]
  5. Burns F. R., Stack M. S., Gray R. D., Paterson C. A. Inhibition of purified collagenase from alkali-burned rabbit corneas. Invest Ophthalmol Vis Sci. 1989 Jul;30(7):1569–1575. [PubMed] [Google Scholar]
  6. Cohen E. J., Laibson P. R., Arentsen J. J., Clemons C. S. Corneal ulcers associated with cosmetic extended wear soft contact lenses. Ophthalmology. 1987 Feb;94(2):109–114. doi: 10.1016/s0161-6420(87)33491-8. [DOI] [PubMed] [Google Scholar]
  7. Darlak K., Miller R. B., Stack M. S., Spatola A. F., Gray R. D. Thiol-based inhibitors of mammalian collagenase. Substituted amide and peptide derivatives of the leucine analogue, 2-[(R,S)-mercaptomethyl]-4-methylpentanoic acid. J Biol Chem. 1990 Mar 25;265(9):5199–5205. [PubMed] [Google Scholar]
  8. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  9. Feder J. A spectrophotometric assay for neutral protease. Biochem Biophys Res Commun. 1968 Jul 26;32(2):326–332. doi: 10.1016/0006-291x(68)90389-6. [DOI] [PubMed] [Google Scholar]
  10. Gray R. D., Miller R. B., Spatola A. F. Inhibition of mammalian collagenases by thiol-containing peptides. J Cell Biochem. 1986;32(1):71–77. doi: 10.1002/jcb.240320108. [DOI] [PubMed] [Google Scholar]
  11. Hassman G., Sugar J. Pseudomonas corneal ulcer with extended-wear soft contact lenses for myopia. Arch Ophthalmol. 1983 Oct;101(10):1549–1550. doi: 10.1001/archopht.1983.01040020551008. [DOI] [PubMed] [Google Scholar]
  12. Hazlett L. D., Iglewski B. H., Berk R. S. Experimental Pseudomonas exotoxin A mediated ocular damage in mouse pups: microscopic observations. Ophthalmic Res. 1982;14(6):401–408. doi: 10.1159/000265217. [DOI] [PubMed] [Google Scholar]
  13. Iglewski B. H., Burns R. P., Gipson I. K. Pathogenesis of corneal damage from pseudomonas exotoxin A. Invest Ophthalmol Vis Sci. 1977 Jan;16(1):73–76. [PubMed] [Google Scholar]
  14. Kawaharajo K., Abe C., Homma J. Y., Kawano M., Goto E. Corneal ulcers caused by protease and elastase from Pseudomonas aeruginosa. Jpn J Exp Med. 1974 Oct;44(5):435–442. [PubMed] [Google Scholar]
  15. Kessler E., Israel M., Landshman N., Chechick A., Blumberg S. In vitro inhibition of Pseudomonas aeruginosa elastase by metal-chelating peptide derivatives. Infect Immun. 1982 Nov;38(2):716–723. doi: 10.1128/iai.38.2.716-723.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kessler E., Kennah H. E., Brown S. I. Pseudomonas protease. Purification, partial characterization, and its effect on collagen, proteoglycan, and rabbit corneas. Invest Ophthalmol Vis Sci. 1977 Jun;16(6):488–497. [PubMed] [Google Scholar]
  17. Kessler E., Mondino B. J., Brown S. I. The corneal response to Pseudomonas aeruginosa: histopathological and enzymatic characterization. Invest Ophthalmol Vis Sci. 1977 Feb;16(2):116–125. [PubMed] [Google Scholar]
  18. Kessler E., Safrin M. Growth of Pseudomonas aeruginosa and secretion of protease in the presence of the protease inhibitors. Metab Pediatr Syst Ophthalmol. 1982;6(3-4):331–336. [PubMed] [Google Scholar]
  19. Kessler E., Spierer A., Blumberg S. Specific inhibition of Pseudomonas aeruginosa elastase injected intracorneally in rabbit eyes. Invest Ophthalmol Vis Sci. 1983 Aug;24(8):1093–1097. [PubMed] [Google Scholar]
  20. Kessler E., Spierer A. Inhibition by phosphoramidon of Pseudomonas aeruginosa elastase injected intracorneally in rabbit eyes. Curr Eye Res. 1984 Aug;3(8):1075–1078. doi: 10.3109/02713688409011755. [DOI] [PubMed] [Google Scholar]
  21. Kreger A. S., Gray L. D. Purification of Pseudomonas aeruginosa proteases and microscopic characterization of pseudomonal protease-induced rabbit corneal damage. Infect Immun. 1978 Feb;19(2):630–648. doi: 10.1128/iai.19.2.630-648.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kreger A. S., Lyerly D. M., Hazlett L. D., Berk R. S. Immunization against experimental Pseudomonas aeruginosa and Serratia marcescens keratitis. Vaccination with lipopolysaccharide endotoxins and proteases. Invest Ophthalmol Vis Sci. 1986 Jun;27(6):932–939. [PubMed] [Google Scholar]
  23. Laibson P. R. Cornea and sclera. Arch Ophthalmol. 1972 Nov;88(5):553–574. doi: 10.1001/archopht.1972.01000030555018. [DOI] [PubMed] [Google Scholar]
  24. Ramphal R., McNiece M. T., Polack F. M. Adherence of Pseudomonas aeruginosa to the injured cornea: a step in the pathogenesis of corneal infections. Ann Ophthalmol. 1981 Apr;13(4):421–425. [PubMed] [Google Scholar]
  25. Seedor J. A., Perry H. D., McNamara T. F., Golub L. M., Buxton D. F., Guthrie D. S. Systemic tetracycline treatment of alkali-induced corneal ulceration in rabbits. Arch Ophthalmol. 1987 Feb;105(2):268–271. doi: 10.1001/archopht.1987.01060020122043. [DOI] [PubMed] [Google Scholar]
  26. Spierer A., Kessler E. The effect of 2-mercaptoacetyl-L-phenylalanyl-L-leucine, a specific inhibitor of Pseudomonas aeruginosa elastase, on experimental Pseudomonas keratitis in rabbit eyes. Curr Eye Res. 1984 Apr;3(4):645–650. doi: 10.3109/02713688409003066. [DOI] [PubMed] [Google Scholar]
  27. Twining S. S., Davis S. D., Hyndiuk R. A. Relationship between proteases and descemetocele formation in experimental Pseudomonas keratitis. Curr Eye Res. 1986 Jul;5(7):503–510. doi: 10.3109/02713688608996372. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES