Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1990 Nov;34(11):2093–2096. doi: 10.1128/aac.34.11.2093

Beta-lactam-fosfomycin antagonism involving modification of penicillin-binding protein 3 in Pseudomonas aeruginosa.

J A Reguera 1, F Baquero 1, J Berenguer 1, M Martinez-Ferrer 1, J L Martinez 1
PMCID: PMC172005  PMID: 2127343

Abstract

Antagonism between fosfomycin and antipseudomonal penicillins, cefotaxime, and ceftriaxone was observed in Pseudomonas aeruginosa RYC212. Fosfomycin, a non-beta-lactam antibiotic that acts on bacterial cell wall synthesis, decreased the expression of penicillin-binding protein 3 and induced beta-lactamase. The antagonistic effect was reduced in the presence of high concentrations of the beta-lactamase inhibitor tazobactam or in fosfomycin-resistant mutants. We suggest that products resulting from fosfomycin cell wall damage could interact with a system that regulates penicillin-binding protein and beta-lactamase production.

Full text

PDF
2093

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews J. M., Baquero F., Beltran J. M., Canton E., Crokaert F., Gobernado M., Gomez-Ius R., Loza E., Navarro M., Olay T. International collaborative study on standardization of bacterial sensitivity to fosfomycin. J Antimicrob Chemother. 1983 Oct;12(4):357–361. doi: 10.1093/jac/12.4.357. [DOI] [PubMed] [Google Scholar]
  2. Curtis N. A., Orr D., Ross G. W., Boulton M. G. Competition of beta-lactam antibiotics for the penicillin-binding proteins of Pseudomonas aeruginosa, Enterobacter cloacae, Klebsiella aerogenes, Proteus rettgeri, and Escherichia coli: comparison with antibacterial activity and effects upon bacterial morphology. Antimicrob Agents Chemother. 1979 Sep;16(3):325–328. doi: 10.1128/aac.16.3.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gotoh N., Nunomura K., Nishino T. Resistance of Pseudomonas aeruginosa to cefsulodin: modification of penicillin-binding protein 3 and mapping of its chromosomal gene. J Antimicrob Chemother. 1990 Apr;25(4):513–523. doi: 10.1093/jac/25.4.513. [DOI] [PubMed] [Google Scholar]
  4. Kahan F. M., Kahan J. S., Cassidy P. J., Kropp H. The mechanism of action of fosfomycin (phosphonomycin). Ann N Y Acad Sci. 1974 May 10;235(0):364–386. doi: 10.1111/j.1749-6632.1974.tb43277.x. [DOI] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Livermore D. M. Kinetics and significance of the activity of the Sabath and Abrahams' beta-lactamase of Pseudomonas aeruginosa against cefotaxime and cefsulodin. J Antimicrob Chemother. 1983 Feb;11(2):169–179. doi: 10.1093/jac/11.2.169. [DOI] [PubMed] [Google Scholar]
  7. Lundrigan M., Earhart C. F. Reduction in three iron-regulated outer membrane proteins and protein a by the Escherichia coli K-12 perA mutation. J Bacteriol. 1981 May;146(2):804–807. doi: 10.1128/jb.146.2.804-807.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Malouin F., Bryan L. E. Modification of penicillin-binding proteins as mechanisms of beta-lactam resistance. Antimicrob Agents Chemother. 1986 Jul;30(1):1–5. doi: 10.1128/aac.30.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nayler J. H. Resistance to beta-lactams in gram-negative bacteria: relative contributions of beta-lactamase and permeability limitations. J Antimicrob Chemother. 1987 Jun;19(6):713–732. doi: 10.1093/jac/19.6.713. [DOI] [PubMed] [Google Scholar]
  10. Nozaki Y., Katayama N., Ono H., Tsubotani S., Harada S., Okazaki H., Nakao Y. Binding of a non-beta-lactam antibiotic to penicillin-binding proteins. Nature. 1987 Jan 8;325(7000):179–180. doi: 10.1038/325179a0. [DOI] [PubMed] [Google Scholar]
  11. O'Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother. 1972 Apr;1(4):283–288. doi: 10.1128/aac.1.4.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rojo F., Ayala J. A., de la Rosa E. J., de Pedro M. A., Arán V., Berenguer J., Vázquez D. Binding of 125I-labeled beta-lactam antibiotics to the penicillin binding proteins of Escherichia coli. J Antibiot (Tokyo) 1984 Apr;37(4):389–393. doi: 10.7164/antibiotics.37.389. [DOI] [PubMed] [Google Scholar]
  13. Stratton C. W., Tausk F. Synergistic resistance mechanisms in Pseudomonas aeruginosa. J Antimicrob Chemother. 1987 Apr;19(4):413–416. doi: 10.1093/jac/19.4.413. [DOI] [PubMed] [Google Scholar]
  14. Utsui Y., Ohya S., Magaribuchi T., Tajima M., Yokota T. Antibacterial activity of cefmetazole alone and in combination with fosfomycin against methicillin- and cephem-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1986 Dec;30(6):917–922. doi: 10.1128/aac.30.6.917. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES