Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1990 Nov;34(11):2256–2259. doi: 10.1128/aac.34.11.2256

In vitro activities of cefoperazone and sulbactam singly and in combination against cefoperazone-resistant members of the family Enterobacteriaceae and nonfermenters.

R J Fass 1, W W Gregory 1, R F D'Amato 1, J M Matsen 1, D N Wright 1, L S Young 1
PMCID: PMC172033  PMID: 2073118

Abstract

Among 28,000 isolates of the family Enterobacteriaceae and nonfermenters isolated at multiple medical centers, 1,084 (4%) were resistant to cefoperazone (MIC, greater than or equal to 64 micrograms/ml) and 1,711 (6%) exhibited cefoperazone MICs of 2 to 32 micrograms/ml. Ninety-six percent of these 2,795 isolates produced beta-lactamase, as determined by the nitrocefin test. Sulbactam alone (8 micrograms/ml) was inactive against 99.6% of the isolates other than Acinetobacter calcoaceticus and Pseudomonas cepacia. Sulbactam enhanced the activity of cefoperazone against 56% of the isolates of the family Enterobacteriaceae and 44% of the nonfermenters. In the presence of sulbactam concentrations of less than or equal to 8 micrograms/ml, 65% of the cefoperazone-resistant isolates had reductions in cefoperazone MICs of greater than or equal to 2 log2 dilution steps and were susceptible to less than or equal to 32 micrograms/ml. Antagonism was not observed.

Full text

PDF
2256

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barry A. L., Jones R. N. Bacterial antibiotic resistance before and after clinical application in the United States. Bull N Y Acad Med. 1987 Apr;63(3):217–230. [PMC free article] [PubMed] [Google Scholar]
  2. English A. R., Retsema J. A., Girard A. E., Lynch J. E., Barth W. E. CP-45,899, a beta-lactamase inhibitor that extends the antibacterial spectrum of beta-lactams: initial bacteriological characterization. Antimicrob Agents Chemother. 1978 Sep;14(3):414–419. doi: 10.1128/aac.14.3.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fass R. J. Inconsistency of synergy between the beta-lactamase inhibitor CP-45,899 and beta-lactam antibiotics against multiply drug-resistant Enterobacteriaceae and pseudomonas species. Antimicrob Agents Chemother. 1981 Feb;19(2):361–363. doi: 10.1128/aac.19.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fu K. P., Neu H. C. Synergistic activity of cefoperazone in combination with beta-lactamase inhibitors. J Antimicrob Chemother. 1981 Mar;7(3):287–292. doi: 10.1093/jac/7.3.287. [DOI] [PubMed] [Google Scholar]
  5. Fuchs P. C., Jones R. N., Barry A. L. Effect of beta-lactamase inhibitors on the antimicrobial activity of cefoperazone, cefotaxime, and ceftizoxime against aerobic and anaerobic beta-lactamase producing bacteria. Diagn Microbiol Infect Dis. 1987 Sep;8(1):61–65. doi: 10.1016/0732-8893(87)90049-6. [DOI] [PubMed] [Google Scholar]
  6. Jones R. N., Barry A. L. Cefoperazone: a review of its antimicrobial spectrum, beta-lactamase stability, enzyme inhibition, and other in vitro characteristics. Rev Infect Dis. 1983 Mar-Apr;5 (Suppl 1):S108–S126. doi: 10.1093/clinids/5.supplement_1.s108. [DOI] [PubMed] [Google Scholar]
  7. Jones R. N., Barry A. L., Packer R. R., Gregory W. W., Thornsberry C. In vitro antimicrobial spectrum, occurrence of synergy, and recommendations for dilution susceptibility testing concentrations of the cefoperazone-sulbactam combination. J Clin Microbiol. 1987 Sep;25(9):1725–1729. doi: 10.1128/jcm.25.9.1725-1729.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jones R. N. Changing patterns of resistance to new beta-lactam antibiotics. In vitro efficacy of cefoperazone against bacterial pathogens. Am J Med. 1984 Jul 31;77(1B):29–34. doi: 10.1016/s0002-9343(84)80093-5. [DOI] [PubMed] [Google Scholar]
  9. Labia R., Morand A., Lelievre V., Mattioni D., Kazmierczak A. Sulbactam: biochemical factors involved in its synergy with ampicillin. Rev Infect Dis. 1986 Nov-Dec;8 (Suppl 5):S496–S502. doi: 10.1093/clinids/8.supplement_5.s496. [DOI] [PubMed] [Google Scholar]
  10. Labia R., Morand A., Tiwari K., Pitton J. S., Sirot D., Sirot J. Kinetic properties of two plasmid-mediated beta-lactamases from Klebsiella pneumoniae with strong activity against third-generation cephalosporins. J Antimicrob Chemother. 1988 Mar;21(3):301–307. doi: 10.1093/jac/21.3.301. [DOI] [PubMed] [Google Scholar]
  11. Neu H. C. Contribution of beta-lactamases to bacterial resistance and mechanisms to inhibit beta-lactamases. Am J Med. 1985 Nov 29;79(5B):2–12. doi: 10.1016/0002-9343(85)90123-8. [DOI] [PubMed] [Google Scholar]
  12. Neu H. C., Fu K. P., Aswapokee N., Aswapokee P., Kung K. Comparative activity and beta-lactamase stability of cefoperazone, a piperazine cephalosporin. Antimicrob Agents Chemother. 1979 Aug;16(2):150–157. doi: 10.1128/aac.16.2.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Neu H. C. The role of beta-lactamase inhibitors in chemotherapy. Pharmacol Ther. 1985;30(1):1–18. doi: 10.1016/0163-7258(85)90044-0. [DOI] [PubMed] [Google Scholar]
  14. Retsema J. A., English A. R., Girard A. E. CP-45,899 in combination with penicillin or ampicillin against penicillin-resistant Staphylococcus, Haemophilus influenzae, and Bacteroides. Antimicrob Agents Chemother. 1980 Apr;17(4):615–622. doi: 10.1128/aac.17.4.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wise R., Andrews J. M., Bedford K. A. Clavulanic acid and CP-45,899: a comparison of their in vitro activity in combination with penicillins. J Antimicrob Chemother. 1980 Mar;6(2):197–206. doi: 10.1093/jac/6.2.197. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES