Abstract
The single-dose pharmacokinetics of orally administered lomefloxacin (400 mg) were studied in normal subjects and in patients with various degrees of renal function. The subjects were classified by creatinine clearance (CLCR) normalized for body surface area: group 1, CLCR of greater than 80 ml/min/1.73 m2; group 2, CLCR of 80 to greater than 40 ml/min/1.73 m2; group 3, CLCR of 40 to greater than 10 ml/min/1.73 m2; and group 4, CLCR of less than or equal to 10 ml/min/1.73 m2. Each group consisted of eight subjects. The pharmacokinetics of lomefloxacin were significantly influenced by renal function. There were significant differences in the elimination rate constant, half-life, area under the concentration-time curve from 0 h to infinity, apparent total drug clearance, renal clearance, and apparent nonrenal drug clearance between the four renal function groups. Mean half-lives for groups 1, 2, 3, and 4 were 8.09, 9.11, 20.90, and 44.25 h, respectively. There were no significant differences between the renal groups for maximum concentration of the drug in serum and apparent volume of distribution. Age had no apparent effect on lomefloxacin disposition. There was a significant relationship between CLCR and lomefloxacin total body clearance (r = 0.92, P = 0.001) and renal clearance (r = 0.94, P = 0.001). Despite a predominate renal route of elimination, nonrenal lomefloxacin clearance significantly decreased with decreasing renal function (r = 0.72, P = 0.001). Mean lomefloxacin excretion rates over 48 h were 60.7, 56.0, 29.1, and 1.0% of the administered dose for groups 1, 2, 3, and 4, respectively. Mean glucuronide excretion rates over 48 h were 7.8, 6.3, 10.0, and 0.6% of the administered dose for groups 1, 2, 3, and 4, respectively. Hemodialysis had no effect on lomefloxacin concentrations in plasma. In patients with normal to moderate renal function, 400 mg of lomefloxacin per day should provide therapeutic concentrations in blood. The lomefloxacin dose should be reduced to 200 mg/day as the CL(CR) falls below 30 ml/min/1.73 m2. No additional dosage adjustments appear to be necessary for hemodialysis patients.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chin N. X., Novelli A., Neu H. C. In vitro activity of lomefloxacin (SC-47111; NY-198), a difluoroquinolone 3-carboxylic acid, compared with those of other quinolones. Antimicrob Agents Chemother. 1988 May;32(5):656–662. doi: 10.1128/aac.32.5.656. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cockcroft D. W., Gault M. H. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41. doi: 10.1159/000180580. [DOI] [PubMed] [Google Scholar]
- Lode H., Höffken G., Olschewski P., Sievers B., Kirch A., Borner K., Koeppe P. Pharmacokinetics of ofloxacin after parenteral and oral administration. Antimicrob Agents Chemother. 1987 Sep;31(9):1338–1342. doi: 10.1128/aac.31.9.1338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrison P. J., Mant T. G., Norman G. T., Robinson J., Kunka R. L. Pharmacokinetics and tolerance of lomefloxacin after sequentially increasing oral doses. Antimicrob Agents Chemother. 1988 Oct;32(10):1503–1507. doi: 10.1128/aac.32.10.1503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stone J. W., Andrews J. M., Ashby J. P., Griggs D., Wise R. Pharmacokinetics and tissue penetration of orally administered lomefloxacin. Antimicrob Agents Chemother. 1988 Oct;32(10):1508–1510. doi: 10.1128/aac.32.10.1508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tartaglione T. A., Raffalovich A. C., Poynor W. J., Espinel-Ingroff A., Kerkering T. M. Pharmacokinetics and tolerance of ciprofloxacin after sequential increasing oral doses. Antimicrob Agents Chemother. 1986 Jan;29(1):62–66. doi: 10.1128/aac.29.1.62. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wise R., Andrews J. M., Ashby J. P., Matthews R. S. In vitro activity of lomefloxacin, a new quinolone antimicrobial agent, in comparison with those of other agents. Antimicrob Agents Chemother. 1988 May;32(5):617–622. doi: 10.1128/aac.32.5.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wise R., Lockley R., Webberly M., Adhami Z. N. The pharmacokinetics and tissue penetration of enoxacin and norfloxacin. J Antimicrob Chemother. 1984 Sep;14 (Suppl 100):75–81. doi: 10.1093/jac/14.suppl_c.75. [DOI] [PubMed] [Google Scholar]
- Wolf R., Eberl R., Dunky A., Mertz N., Chang T., Goulet J. R., Latts J. The clinical pharmacokinetics and tolerance of enoxacin in healthy volunteers. J Antimicrob Chemother. 1984 Sep;14 (Suppl 100):63–69. doi: 10.1093/jac/14.suppl_c.63. [DOI] [PubMed] [Google Scholar]