Abstract
AIM—To examine the effects of early lesions in the visual pathway on visual function; and to identify early prognostic indicators of visual abnormalities. METHODS—The visual function of 37 infants with perinatal brain lesions on magnetic resonance imaging was assessed using behavioural and electrophysiological variables. RESULTS—Normal visual behaviour was observed in most infants with large bilateral occipital lesions, but all the infants with associated basal ganglia involvement had abnormal visual function. Visual abnormalities were also present in six infants with isolated basal ganglia lesions. CONCLUSIONS—These observations suggest that basal ganglia may have an integral role in human visual development and that their presence on neonatal MRI could be an early marker of abnormal visual function.
Full Text
The Full Text of this article is available as a PDF (98.6 KB).
Figure 1 .
Boy aged 2 weeks. T1 weighted spin-echo sequence [TE 860/20] showing, bilateral abnormal signal intensity in the posterior aspects of the putamen and thalamus. This child had multiple abnormalities on both the visual assessments performed at 3 and 6 months.
Figure 2 .
Correlation between MRI and visual findings: *generalised cortical lesions involving occipital cortex; ocul mov ocular movement; OKN optokinetic nystagmus; fix'n shift fixation shift; att dist attention at distance.
Figure 3 .
Boy aged 2 weeks. T1 weighted spin-echo sequence [TE 860/20], showing bilateral haemorrhagic lesions involving the occipital pole and additional haemorrhagic involvement of both temporal lobes. There are no abnormal signal intensities in the basal ganglia and talami. This child tested normal on all the visual tests used.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atkinson J. Human visual development over the first 6 months of life. A review and a hypothesis. Hum Neurobiol. 1984;3(2):61–74. [PubMed] [Google Scholar]
- Bronson G. The postnatal growth of visual capacity. Child Dev. 1974 Dec;45(4):873–890. [PubMed] [Google Scholar]
- Cioni G., Fazzi B., Ipata A. E., Canapicchi R., van Hof-van Duin J. Correlation between cerebral visual impairment and magnetic resonance imaging in children with neonatal encephalopathy. Dev Med Child Neurol. 1996 Feb;38(2):120–132. doi: 10.1111/j.1469-8749.1996.tb12083.x. [DOI] [PubMed] [Google Scholar]
- Dubowitz L. M., Mushin J., De Vries L., Arden G. B. Visual function in the newborn infant: is it cortically mediated? Lancet. 1986 May 17;1(8490):1139–1141. doi: 10.1016/s0140-6736(86)91847-7. [DOI] [PubMed] [Google Scholar]
- Eken P., de Vries L. S., van der Graaf Y., Meiners L. C., van Nieuwenhuizen O. Haemorrhagic-ischaemic lesions of the neonatal brain: correlation between cerebral visual impairment, neurodevelopmental outcome and MRI in infancy. Dev Med Child Neurol. 1995 Jan;37(1):41–55. doi: 10.1111/j.1469-8749.1995.tb11931.x. [DOI] [PubMed] [Google Scholar]
- Kato M., Miyashita N., Hikosaka O., Matsumura M., Usui S., Kori A. Eye movements in monkeys with local dopamine depletion in the caudate nucleus. I. Deficits in spontaneous saccades. J Neurosci. 1995 Jan;15(1 Pt 2):912–927. doi: 10.1523/JNEUROSCI.15-01-00912.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kennard C., Lueck C. J. Oculomotor abnormalities in diseases of the basal ganglia. Rev Neurol (Paris) 1989;145(8-9):587–595. [PubMed] [Google Scholar]
- Kermadi I., Boussaoud D. Role of the primate striatum in attention and sensorimotor processes: comparison with premotor cortex. Neuroreport. 1995 May 30;6(8):1177–1181. doi: 10.1097/00001756-199505300-00026. [DOI] [PubMed] [Google Scholar]
- Miyashita N., Hikosaka O., Kato M. Visual hemineglect induced by unilateral striatal dopamine deficiency in monkeys. Neuroreport. 1995 Jun 19;6(9):1257–1260. doi: 10.1097/00001756-199506090-00007. [DOI] [PubMed] [Google Scholar]
- Pike M. G., Holmstrom G., de Vries L. S., Pennock J. M., Drew K. J., Sonksen P. M., Dubowitz L. M. Patterns of visual impairment associated with lesions of the preterm infant brain. Dev Med Child Neurol. 1994 Oct;36(10):849–862. doi: 10.1111/j.1469-8749.1994.tb11776.x. [DOI] [PubMed] [Google Scholar]
- Serizawa M., McHaffie J. G., Hoshino K., Norita M. Corticostriatal and corticotectal projections from visual cortical areas 17, 18 and 18a in the pigmented rat. Arch Histol Cytol. 1994 Dec;57(5):493–507. doi: 10.1679/aohc.57.493. [DOI] [PubMed] [Google Scholar]
- Takada M. The lateroposterior thalamic nucleus and substantia nigra pars lateralis: origin of dual innervation over the visual system and basal ganglia. Neurosci Lett. 1992 May 25;139(2):153–156. doi: 10.1016/0304-3940(92)90540-n. [DOI] [PubMed] [Google Scholar]
- Ungerleider L. G., Desimone R., Galkin T. W., Mishkin M. Subcortical projections of area MT in the macaque. J Comp Neurol. 1984 Mar 1;223(3):368–386. doi: 10.1002/cne.902230304. [DOI] [PubMed] [Google Scholar]
- Updyke B. V. Organization of visual corticostriatal projections in the cat, with observations on visual projections to claustrum and amygdala. J Comp Neurol. 1993 Jan 8;327(2):159–193. doi: 10.1002/cne.903270202. [DOI] [PubMed] [Google Scholar]
- Wurtz R. H., Hikosaka O. Role of the basal ganglia in the initiation of saccadic eye movements. Prog Brain Res. 1986;64:175–190. doi: 10.1016/S0079-6123(08)63412-3. [DOI] [PubMed] [Google Scholar]



