Skip to main content
Archives of Disease in Childhood. Fetal and Neonatal Edition logoLink to Archives of Disease in Childhood. Fetal and Neonatal Edition
. 1998 Jan;78(1):F33–F37. doi: 10.1136/fn.78.1.f33

Cerebral blood flow increases over the first three days of life in extremely preterm neonates

J Meek, L Tyszczuk, C Elwell, J Wyatt
PMCID: PMC1720736  PMID: 9536838

Abstract

AIM—To measure changes in cerebral haemodynamics over the first three days of life in very preterm infants with normal brains.
METHODS—Eleven mechanically ventilated infants (median gestational age 26 weeks) without evidence of major abnormalities on cranial ultrasound examination were studied. Cerebral blood flow (CBF) and cerebral blood volume (CBV) were measured using near infrared spectroscopy at least twice over the first three days of life.
RESULTS—Cerebral blood flow increased significantly with time (p=0.02; stepwise linear regression) and this was independent of mean arterial blood pressure, PaCO2, and haematocrit.
CONCLUSION—This change is likely to represent a normal adaptive response of the cerebral circulation to postnatal life. 



Full Text

The Full Text of this article is available as a PDF (112.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agata Y., Hiraishi S., Oguchi K., Misawa H., Horiguchi Y., Fujino N., Yashiro K., Shimada N. Changes in left ventricular output from fetal to early neonatal life. J Pediatr. 1991 Sep;119(3):441–445. doi: 10.1016/s0022-3476(05)82060-8. [DOI] [PubMed] [Google Scholar]
  2. Altman D. I., Perlman J. M., Volpe J. J., Powers W. J. Cerebral oxygen metabolism in newborns. Pediatrics. 1993 Jul;92(1):99–104. [PubMed] [Google Scholar]
  3. Amiel-Tison C., Stewart A. Follow up studies during the first five years of life: a pervasive assessment of neurological function. Arch Dis Child. 1989 Apr;64(4 Spec No):496–502. doi: 10.1136/adc.64.4_spec_no.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brun N. C., Greisen G. Cerebrovascular responses to carbon dioxide as detected by near-infrared spectrophotometry: comparison of three different measures. Pediatr Res. 1994 Jul;36(1 Pt 1):20–24. doi: 10.1203/00006450-199407001-00004. [DOI] [PubMed] [Google Scholar]
  5. Bucher H. U., Edwards A. D., Lipp A. E., Duc G. Comparison between near infrared spectroscopy and 133Xenon clearance for estimation of cerebral blood flow in critically ill preterm infants. Pediatr Res. 1993 Jan;33(1):56–60. doi: 10.1203/00006450-199301000-00012. [DOI] [PubMed] [Google Scholar]
  6. Cope M., Delpy D. T. System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med Biol Eng Comput. 1988 May;26(3):289–294. doi: 10.1007/BF02447083. [DOI] [PubMed] [Google Scholar]
  7. Edwards A. D., Wyatt J. S., Richardson C., Delpy D. T., Cope M., Reynolds E. O. Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy. Lancet. 1988 Oct 1;2(8614):770–771. doi: 10.1016/s0140-6736(88)92418-x. [DOI] [PubMed] [Google Scholar]
  8. Elwell C. E., Cope M., Edwards A. D., Wyatt J. S., Delpy D. T., Reynolds E. O. Quantification of adult cerebral hemodynamics by near-infrared spectroscopy. J Appl Physiol (1985) 1994 Dec;77(6):2753–2760. doi: 10.1152/jappl.1994.77.6.2753. [DOI] [PubMed] [Google Scholar]
  9. Evans N., Kluckow M. Early determinants of right and left ventricular output in ventilated preterm infants. Arch Dis Child Fetal Neonatal Ed. 1996 Mar;74(2):F88–F94. doi: 10.1136/fn.74.2.f88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hayashi T., Ichiyama T., Uchida M., Tashiro N., Tanaka H. Evaluation by colour Doppler and pulsed Doppler sonography of blood flow velocities in intracranial arteries during the early neonatal period. Eur J Pediatr. 1992 Jun;151(6):461–465. doi: 10.1007/BF01959365. [DOI] [PubMed] [Google Scholar]
  11. Linderkamp O., Stadler A. A., Zilow E. P. Blood viscosity and optimal hematocrit in preterm and full-term neonates in 50- to 500-micrometer tubes. Pediatr Res. 1992 Jul;32(1):97–102. doi: 10.1203/00006450-199207000-00019. [DOI] [PubMed] [Google Scholar]
  12. Lipp-Zwahlen A. E., Müller A., Tuchschmid P., Duc G. Oxygen affinity of haemoglobin modulates cerebral blood flow in premature infants. A study with the non-invasive xenon-133 method. Acta Paediatr Scand Suppl. 1989;360:26–32. doi: 10.1111/j.1651-2227.1989.tb11278.x. [DOI] [PubMed] [Google Scholar]
  13. Lou H. C., Skov H., Henriksen L. Intellectual impairment with regional cerebral dysfunction after low neonatal cerebral blood flow. Acta Paediatr Scand Suppl. 1989;360:72–82. doi: 10.1111/j.1651-2227.1989.tb11285.x. [DOI] [PubMed] [Google Scholar]
  14. Lou H. C., Skov H., Pedersen H. Low cerebral blood flow: a risk factor in the neonate. J Pediatr. 1979 Oct;95(4):606–609. doi: 10.1016/s0022-3476(79)80779-9. [DOI] [PubMed] [Google Scholar]
  15. Lundstrøm K. E., Pryds O., Greisen G. Oxygen at birth and prolonged cerebral vasoconstriction in preterm infants. Arch Dis Child Fetal Neonatal Ed. 1995 Sep;73(2):F81–F86. doi: 10.1136/fn.73.2.f81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mandelbaum V. H., Alverson D. C., Kirchgessner A., Linderkamp O. Postnatal changes in cardiac output and haemorrheology in normal neonates born at full term. Arch Dis Child. 1991 Apr;66(4 Spec No):391–394. doi: 10.1136/adc.66.4_spec_no.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pryds O., Christensen N. J., Friis-Hansen B. Increased cerebral blood flow and plasma epinephrine in hypoglycemic, preterm neonates. Pediatrics. 1990 Feb;85(2):172–176. [PubMed] [Google Scholar]
  18. Roth S. C., Baudin J., Pezzani-Goldsmith M., Townsend J., Reynolds E. O., Stewart A. L. Relation between neurodevelopmental status of very preterm infants at one and eight years. Dev Med Child Neurol. 1994 Dec;36(12):1049–1062. doi: 10.1111/j.1469-8749.1994.tb11808.x. [DOI] [PubMed] [Google Scholar]
  19. Skov L., Pryds O., Greisen G. Estimating cerebral blood flow in newborn infants: comparison of near infrared spectroscopy and 133Xe clearance. Pediatr Res. 1991 Dec;30(6):570–573. doi: 10.1203/00006450-199112000-00016. [DOI] [PubMed] [Google Scholar]
  20. Thorburn R. J., Lipscomb A. P., Stewart A. L., Reynolds E. O., Hope P. L. Timing and antecedents of periventricular haemorrhage and of cerebral atrophy in very preterm infants. Early Hum Dev. 1982 Dec 6;7(3):221–238. doi: 10.1016/0378-3782(82)90085-8. [DOI] [PubMed] [Google Scholar]
  21. Walther F. J., Benders M. J., Leighton J. O. Early changes in the neonatal circulatory transition. J Pediatr. 1993 Oct;123(4):625–632. doi: 10.1016/s0022-3476(05)80966-7. [DOI] [PubMed] [Google Scholar]
  22. Winberg P., Sonesson S. E., Lundell B. P. Postnatal changes in intracranial blood flow velocity in preterm infants. Acta Paediatr Scand. 1990 Dec;79(12):1150–1155. doi: 10.1111/j.1651-2227.1990.tb11403.x. [DOI] [PubMed] [Google Scholar]
  23. Wyatt J. S., Cope M., Delpy D. T., Richardson C. E., Edwards A. D., Wray S., Reynolds E. O. Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy. J Appl Physiol (1985) 1990 Mar;68(3):1086–1091. doi: 10.1152/jappl.1990.68.3.1086. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood. Fetal and Neonatal Edition are provided here courtesy of BMJ Publishing Group

RESOURCES