Skip to main content
Archives of Disease in Childhood. Fetal and Neonatal Edition logoLink to Archives of Disease in Childhood. Fetal and Neonatal Edition
. 1998 Mar;78(2):F129–F132. doi: 10.1136/fn.78.2.f129

Reduced expression of C5a receptors on neutrophils from cord blood

M Nybo, O Sorensen, R Leslie, P Wang
PMCID: PMC1720753  PMID: 9577284

Abstract

AIM—To describe further functional deficiencies of neonatal neutrophils by measuring the expression of C5a receptors.
METHODS—C5a uptake was measured using flow cytometry with fluorescein isothiocynate labelled recombinant C5a. The response of neutrophils to stimulation with C5a and fMLP was tested by measuring migration and exocytosis of myeloperoxidase and lactoferrin.
RESULTS—C5a mean fluorescence on neutrophils from neonates was significantly lower (22.4 (SD 3.5)) than in adult controls (31.5 (3.1)). Neutrophils from neonates migrated poorly towards both C5a and fMLP compared with those from adult controls. Exocytosis of myeloperoxidase, but not lactoferrin from neonatal neutrophils stimulated with C5a, was significantly lower than in adult controls. fMLP stimulation, on the other hand, resulted in significantly higher exocytosis in neonates.
CONCLUSION—The lower expression of C5a receptors on neutrophils from neonates could be related to reduced C5a mediated exocytosis of myeloperoxidase.



Full Text

The Full Text of this article is available as a PDF (108.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abughali N., Berger M., Tosi M. F. Deficient total cell content of CR3 (CD11b) in neonatal neutrophils. Blood. 1994 Feb 15;83(4):1086–1092. [PubMed] [Google Scholar]
  2. Ambruso D. R., Bentwood B., Henson P. M., Johnston R. B., Jr Oxidative metabolism of cord blood neutrophils: relationship to content and degranulation of cytoplasmic granules. Pediatr Res. 1984 Nov;18(11):1148–1153. doi: 10.1203/00006450-198411000-00019. [DOI] [PubMed] [Google Scholar]
  3. Anderson D. C., Freeman K. L., Heerdt B., Hughes B. J., Jack R. M., Smith C. W. Abnormal stimulated adherence of neonatal granulocytes: impaired induction of surface Mac-1 by chemotactic factors or secretagogues. Blood. 1987 Sep;70(3):740–750. [PubMed] [Google Scholar]
  4. Anderson D. C., Hughes B. J., Smith C. W. Abnormal mobility of neonatal polymorphonuclear leukocytes. Relationship to impaired redistribution of surface adhesion sites by chemotactic factor or colchicine. J Clin Invest. 1981 Oct;68(4):863–874. doi: 10.1172/JCI110341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Antonsen S., Wiggers P., Dalhøj J., Blaabjerg O. An enzyme-linked immunosorbent assay for plasma-lactoferrin. Concentrations in 362 healthy, adult blood donors. Scand J Clin Lab Invest. 1993 Apr;53(2):133–144. doi: 10.3109/00365519309088400. [DOI] [PubMed] [Google Scholar]
  6. Berger M. Complement deficiency and neutrophil dysfunction as risk factors for bacterial infection in newborns and the role of granulocyte transfusion in therapy. Rev Infect Dis. 1990 May-Jun;12 (Suppl 4):S401–S409. doi: 10.1093/clinids/12.supplement_4.s401. [DOI] [PubMed] [Google Scholar]
  7. Brandslund I., Siersted H. C., Svehag S. E., Teisner B. Double-decker rocket immunoelectrophoresis for direct quantitation of complement C3 split products with C3d specificities in plasma. J Immunol Methods. 1981;44(1):63–71. doi: 10.1016/0022-1759(81)90107-1. [DOI] [PubMed] [Google Scholar]
  8. Bruce M. C., Baley J. E., Medvik K. A., Berger M. Impaired surface membrane expression of C3bi but not C3b receptors on neonatal neutrophils. Pediatr Res. 1987 Mar;21(3):306–311. doi: 10.1203/00006450-198703000-00022. [DOI] [PubMed] [Google Scholar]
  9. Cates K. L., Rowe J. C., Ballow M. The premature infant as a compromised host. Curr Probl Pediatr. 1983 Jun;13(8):1–63. doi: 10.1016/0045-9380(83)90008-7. [DOI] [PubMed] [Google Scholar]
  10. Chenoweth D. E., Hugli T. E. Demonstration of specific C5a receptor on intact human polymorphonuclear leukocytes. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3943–3947. doi: 10.1073/pnas.75.8.3943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chenoweth D. E., Hugli T. E. Human C5a and C5a analogs as probes of the neutrophil C5a receptor. Mol Immunol. 1980 Feb;17(2):151–161. doi: 10.1016/0161-5890(80)90067-x. [DOI] [PubMed] [Google Scholar]
  12. Falconer A. E., Carr R., Edwards S. W. Neutrophils from preterm neonates and adults show similar cell surface receptor expression: analysis using a whole blood assay. Biol Neonate. 1995;67(1):26–33. doi: 10.1159/000244139. [DOI] [PubMed] [Google Scholar]
  13. Falk W., Goodwin R. H., Jr, Leonard E. J. A 48-well micro chemotaxis assembly for rapid and accurate measurement of leukocyte migration. J Immunol Methods. 1980;33(3):239–247. doi: 10.1016/0022-1759(80)90211-2. [DOI] [PubMed] [Google Scholar]
  14. Fortenberry J. D., Marolda J. R., Anderson D. C., Smith C. W., Mariscalco M. M. CD18-dependent and L-selectin-dependent neutrophil emigration is diminished in neonatal rabbits. Blood. 1994 Aug 1;84(3):889–897. [PubMed] [Google Scholar]
  15. Gerard C., Gerard N. P. C5A anaphylatoxin and its seven transmembrane-segment receptor. Annu Rev Immunol. 1994;12:775–808. doi: 10.1146/annurev.iy.12.040194.004015. [DOI] [PubMed] [Google Scholar]
  16. Giannini E., Boulay F. Phosphorylation, dephosphorylation, and recycling of the C5a receptor in differentiated HL60 cells. J Immunol. 1995 Apr 15;154(8):4055–4064. [PubMed] [Google Scholar]
  17. Hill H. R. Host defenses in the neonate: prospects for enhancement. Semin Perinatol. 1985 Jan;9(1):2–11. [PubMed] [Google Scholar]
  18. Hilmo A., Howard T. H. F-actin content of neonate and adult neutrophils. Blood. 1987 Mar;69(3):945–949. [PubMed] [Google Scholar]
  19. Hugli T. E. The structural basis for anaphylatoxin and chemotactic functions of C3a, C4a, and C5a. Crit Rev Immunol. 1981 Feb;1(4):321–366. [PubMed] [Google Scholar]
  20. Jones D. H., Schmalstieg F. C., Dempsey K., Krater S. S., Nannen D. D., Smith C. W., Anderson D. C. Subcellular distribution and mobilization of MAC-1 (CD11b/CD18) in neonatal neutrophils. Blood. 1990 Jan 15;75(2):488–498. [PubMed] [Google Scholar]
  21. Kjeldsen L., Sengeløv H., Lollike K., Borregaard N. Granules and secretory vesicles in human neonatal neutrophils. Pediatr Res. 1996 Jul;40(1):120–129. doi: 10.1203/00006450-199607000-00021. [DOI] [PubMed] [Google Scholar]
  22. Klein R. B., Fischer T. J., Gard S. E., Biberstein M., Rich K. C., Stiehm E. R. Decreased mononuclear and polymorphonuclear chemotaxis in human newborns, infants, and young children. Pediatrics. 1977 Oct;60(4):467–472. [PubMed] [Google Scholar]
  23. Mease A. D., Fischer G. W., Hunter K. W., Ruymann F. B. Decreased phytohemagglutinin-induced aggregation and C5a-induced chemotaxis of human newborn neutrophils. Pediatr Res. 1980 Feb;14(2):142–146. doi: 10.1203/00006450-198002000-00015. [DOI] [PubMed] [Google Scholar]
  24. Rebuck N., Gibson A., Finn A. Neutrophil adhesion molecules in term and premature infants: normal or enhanced leucocyte integrins but defective L-selectin expression and shedding. Clin Exp Immunol. 1995 Jul;101(1):183–189. doi: 10.1111/j.1365-2249.1995.tb02296.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rochon Y. P., Frojmovic M. M., Mills E. L. Comparative studies of microscopically determined aggregation, degranulation, and light transmission after chemotactic activation of adult and newborn neutrophils. Blood. 1990 May 15;75(10):2053–2060. [PubMed] [Google Scholar]
  26. Sacchi F., Hill H. R. Defective membrane potential changes in neutrophils from human neonates. J Exp Med. 1984 Oct 1;160(4):1247–1252. doi: 10.1084/jem.160.4.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sengeløv H., Boulay F., Kjeldsen L., Borregaard N. Subcellular localization and translocation of the receptor for N-formylmethionyl-leucyl-phenylalanine in human neutrophils. Biochem J. 1994 Apr 15;299(Pt 2):473–479. doi: 10.1042/bj2990473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sengeløv H., Kjeldsen L., Diamond M. S., Springer T. A., Borregaard N. Subcellular localization and dynamics of Mac-1 (alpha m beta 2) in human neutrophils. J Clin Invest. 1993 Sep;92(3):1467–1476. doi: 10.1172/JCI116724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Strauss R. G., Snyder E. L. Chemotactic peptide binding by intact neutrophils from human neonates. Pediatr Res. 1984 Jan;18(1):63–66. [PubMed] [Google Scholar]
  30. Török C., Lundahl J., Hed J., Lagercrantz H. Diversity in regulation of adhesion molecules (Mac-1 and L-selectin) in monocytes and neutrophils from neonates and adults. Arch Dis Child. 1993 May;68(5 Spec No):561–565. doi: 10.1136/adc.68.5_spec_no.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Van Epps D. E., Simpson S., Bender J. G., Chenoweth D. E. Regulation of C5a and formyl peptide receptor expression on human polymorphonuclear leukocytes. J Immunol. 1990 Feb 1;144(3):1062–1068. [PubMed] [Google Scholar]
  32. Webster R. O., Hong S. R., Johnston R. B., Jr, Henson P. M. Biologial effects of the human complement fragments C5a and C5ades Arg on neutrophil function. Immunopharmacology. 1980 Jun;2(3):201–219. doi: 10.1016/0162-3109(80)90050-8. [DOI] [PubMed] [Google Scholar]
  33. Wilson C. B. Immunologic basis for increased susceptibility of the neonate to infection. J Pediatr. 1986 Jan;108(1):1–12. doi: 10.1016/s0022-3476(86)80761-2. [DOI] [PubMed] [Google Scholar]
  34. Wolach B., Ben Dor M., Chomsky O., Gavrieli R., Shinitzky M. Improved chemotactic ability of neonatal polymorphonuclear cells induced by mild membrane rigidification. J Leukoc Biol. 1992 Apr;51(4):324–328. doi: 10.1002/jlb.51.4.324. [DOI] [PubMed] [Google Scholar]
  35. Yasui K., Masuda M., Tsuno T., Matsuoka T., Komiyama A., Akabane T., Murata K. An increase in polymorphonuclear leucocyte chemotaxis accompanied by a change in the membrane fluidity with age during childhood. Clin Exp Immunol. 1990 Jul;81(1):156–159. doi: 10.1111/j.1365-2249.1990.tb05307.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zigmond S. H., Hirsch J. G. Leukocyte locomotion and chemotaxis. New methods for evaluation, and demonstration of a cell-derived chemotactic factor. J Exp Med. 1973 Feb 1;137(2):387–410. doi: 10.1084/jem.137.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zimmerli W., Reber A. M., Dahinden C. A. The role of formylpeptide receptors, C5a receptors, and cytosolic-free calcium in neutrophil priming. J Infect Dis. 1990 Feb;161(2):242–249. doi: 10.1093/infdis/161.2.242. [DOI] [PubMed] [Google Scholar]
  38. van Epps D. E., Chenoweth D. E. Analysis of the binding of fluorescent C5a and C3a to human peripheral blood leukocytes. J Immunol. 1984 Jun;132(6):2862–2867. [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood. Fetal and Neonatal Edition are provided here courtesy of BMJ Publishing Group

RESOURCES