Abstract
AIM—To investigate age related alterations in glutamate N-methyl-D-aspartate (NMDA) receptor binding produced by the modulatory compounds glutamate, glycine, and magnesium (Mg2+) sulphate. METHODS—The effects produced by glutamate plus glycine, and Mg2+ on the binding of [3H]MK-801, a ligand for the N-methyl-D-aspartate ion channel phencyclidine site, were measured in membrane preparations made from prefrontal cortex from human neonate (n = 5), infant (n = 6), and adult (n= 6) necropsy brains. RESULTS—Neonatal brains had the least [3H]MK-801 binding, suggesting either a low density of NMDA receptors or a more restricted access of [3H]MK-801 to cation channel sites. Infant brains had the most [3H]MK-801 binding which was stimulated to a greater extent by L-glutamate (100 µM) and glycine (10 µM) than in neonatal and adult brains. Mg2+ invariably inhibited [3H]MK-801 binding. However, the Mg2+ IC50 value was higher in neonatal brain (3.6 mM) than infant (1.4 mM) and adult (0.87 mM) brains. CONCLUSION—Infant brain may have excess NMDA receptors which are hyper responsive to glutamate and glycine. The lower potency of Mg2+ to inhibit [3H]MK-801 binding in neonatal cortex may be because newborn babies have NMDA receptors without the normal complement of Mg2+ sites. The findings suggest that therapeutic NMDA receptor block in neonates requires higher concentrations of magnesium sulphate in brain tissue.
Full Text
The Full Text of this article is available as a PDF (110.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ascher P., Nowak L. The role of divalent cations in the N-methyl-D-aspartate responses of mouse central neurones in culture. J Physiol. 1988 May;399:247–266. doi: 10.1113/jphysiol.1988.sp017078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ben-Ari Y., Cherubini E., Krnjevic K. Changes in voltage dependence of NMDA currents during development. Neurosci Lett. 1988 Nov 22;94(1-2):88–92. doi: 10.1016/0304-3940(88)90275-3. [DOI] [PubMed] [Google Scholar]
- Bowe M. A., Nadler J. V. Developmental increase in the sensitivity to magnesium of NMDA receptors on CA1 hippocampal pyramidal cells. Brain Res Dev Brain Res. 1990 Oct 1;56(1):55–61. doi: 10.1016/0165-3806(90)90164-t. [DOI] [PubMed] [Google Scholar]
- Bowe M. A., Nadler J. V. Polyamines antagonize N-methyl-D-aspartate-evoked depolarizations, but reduce Mg2+ block. Eur J Pharmacol. 1995 May 4;278(1):55–65. doi: 10.1016/0014-2999(95)00102-q. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Burgard E. C., Hablitz J. J. Developmental changes in NMDA and non-NMDA receptor-mediated synaptic potentials in rat neocortex. J Neurophysiol. 1993 Jan;69(1):230–240. doi: 10.1152/jn.1993.69.1.230. [DOI] [PubMed] [Google Scholar]
- Corbally M. T., Heaton N., Rela M., Mieli-Vergani G., Portmann B., Mowat A., Williams R., Tan K. C. Emergency liver transplantation after Kasai portoenterostomy. Arch Dis Child. 1994 Feb;70(2):147–148. doi: 10.1136/adc.70.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalkara T., Erdemli G., Barun S., Onur R. Glycine is required for NMDA receptor activation: electrophysiological evidence from intact rat hippocampus. Brain Res. 1992 Apr 3;576(2):197–202. doi: 10.1016/0006-8993(92)90680-8. [DOI] [PubMed] [Google Scholar]
- Foster A. C., Wong E. H. The novel anticonvulsant MK-801 binds to the activated state of the N-methyl-D-aspartate receptor in rat brain. Br J Pharmacol. 1987 Jun;91(2):403–409. doi: 10.1111/j.1476-5381.1987.tb10295.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldenberg R. L., Rouse D. J. Preterm birth, cerebral palsy and magnesium. Nat Med. 1997 Feb;3(2):146–147. doi: 10.1038/nm0297-146. [DOI] [PubMed] [Google Scholar]
- Greenamyre T., Penney J. B., Young A. B., Hudson C., Silverstein F. S., Johnston M. V. Evidence for transient perinatal glutamatergic innervation of globus pallidus. J Neurosci. 1987 Apr;7(4):1022–1030. doi: 10.1523/JNEUROSCI.07-04-01022.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson J. W., Ascher P. Voltage-dependent block by intracellular Mg2+ of N-methyl-D-aspartate-activated channels. Biophys J. 1990 May;57(5):1085–1090. doi: 10.1016/S0006-3495(90)82626-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kato N., Yoshimura H. Reduced Mg2+ block of N-methyl-D-aspartate receptor-mediated synaptic potentials in developing visual cortex. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7114–7118. doi: 10.1073/pnas.90.15.7114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khazipov R., Ragozzino D., Bregestovski P. Kinetics and Mg2+ block of N-methyl-D-aspartate receptor channels during postnatal development of hippocampal CA3 pyramidal neurons. Neuroscience. 1995 Dec;69(4):1057–1065. doi: 10.1016/0306-4522(95)00337-i. [DOI] [PubMed] [Google Scholar]
- Kleckner N. W., Dingledine R. Regulation of hippocampal NMDA receptors by magnesium and glycine during development. Brain Res Mol Brain Res. 1991 Sep;11(2):151–159. [PubMed] [Google Scholar]
- Kuner T., Schoepfer R. Multiple structural elements determine subunit specificity of Mg2+ block in NMDA receptor channels. J Neurosci. 1996 Jun 1;16(11):3549–3558. doi: 10.1523/JNEUROSCI.16-11-03549.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kupper J., Ascher P., Neyton J. Probing the pore region of recombinant N-methyl-D-aspartate channels using external and internal magnesium block. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8648–8653. doi: 10.1073/pnas.93.16.8648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kutsuwada T., Kashiwabuchi N., Mori H., Sakimura K., Kushiya E., Araki K., Meguro H., Masaki H., Kumanishi T., Arakawa M. Molecular diversity of the NMDA receptor channel. Nature. 1992 Jul 2;358(6381):36–41. doi: 10.1038/358036a0. [DOI] [PubMed] [Google Scholar]
- Liu Y., von Euler G. Ca2+ and H+ antagonize the decrease of [3H]MK-801 binding induced by glutamate and glycine in the presence of Mg2+. Neurochem Int. 1996 Apr;28(4):401–415. doi: 10.1016/0197-0186(95)00102-6. [DOI] [PubMed] [Google Scholar]
- Marret S., Gressens P., Gadisseux J. F., Evrard P. Prevention by magnesium of excitotoxic neuronal death in the developing brain: an animal model for clinical intervention studies. Dev Med Child Neurol. 1995 Jun;37(6):473–484. doi: 10.1111/j.1469-8749.1995.tb12035.x. [DOI] [PubMed] [Google Scholar]
- Mayer M. L., Westbrook G. L., Guthrie P. B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature. 1984 May 17;309(5965):261–263. doi: 10.1038/309261a0. [DOI] [PubMed] [Google Scholar]
- McDonald J. W., Johnston M. V. Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Res Brain Res Rev. 1990 Jan-Apr;15(1):41–70. doi: 10.1016/0165-0173(90)90011-c. [DOI] [PubMed] [Google Scholar]
- Meldrum B., Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci. 1990 Sep;11(9):379–387. doi: 10.1016/0165-6147(90)90184-a. [DOI] [PubMed] [Google Scholar]
- Monaghan D. T., Cotman C. W. Identification and properties of N-methyl-D-aspartate receptors in rat brain synaptic plasma membranes. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7532–7536. doi: 10.1073/pnas.83.19.7532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monyer H., Burnashev N., Laurie D. J., Sakmann B., Seeburg P. H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 1994 Mar;12(3):529–540. doi: 10.1016/0896-6273(94)90210-0. [DOI] [PubMed] [Google Scholar]
- Monyer H., Sprengel R., Schoepfer R., Herb A., Higuchi M., Lomeli H., Burnashev N., Sakmann B., Seeburg P. H. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science. 1992 May 22;256(5060):1217–1221. doi: 10.1126/science.256.5060.1217. [DOI] [PubMed] [Google Scholar]
- Morrisett R. A., Mott D. D., Lewis D. V., Wilson W. A., Swartzwelder H. S. Reduced sensitivity of the N-methyl-D-aspartate component of synaptic transmission to magnesium in hippocampal slices from immature rats. Brain Res Dev Brain Res. 1990 Nov 1;56(2):257–262. doi: 10.1016/0165-3806(90)90090-l. [DOI] [PubMed] [Google Scholar]
- Nelson K. B., Grether J. K. Can magnesium sulfate reduce the risk of cerebral palsy in very low birthweight infants? Pediatrics. 1995 Feb;95(2):263–269. [PubMed] [Google Scholar]
- Nowak L., Bregestovski P., Ascher P., Herbet A., Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984 Feb 2;307(5950):462–465. doi: 10.1038/307462a0. [DOI] [PubMed] [Google Scholar]
- Paoletti P., Neyton J., Ascher P. Glycine-independent and subunit-specific potentiation of NMDA responses by extracellular Mg2+. Neuron. 1995 Nov;15(5):1109–1120. doi: 10.1016/0896-6273(95)90099-3. [DOI] [PubMed] [Google Scholar]
- Peters S., Koh J., Choi D. W. Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons. Science. 1987 May 1;236(4801):589–593. doi: 10.1126/science.2883728. [DOI] [PubMed] [Google Scholar]
- Piggott M. A., Perry E. K., Perry R. H., Court J. A. [3H]MK-801 binding to the NMDA receptor complex, and its modulation in human frontal cortex during development and aging. Brain Res. 1992 Aug 21;588(2):277–286. doi: 10.1016/0006-8993(92)91586-4. [DOI] [PubMed] [Google Scholar]
- Premkumar L. S., Auerbach A. Identification of a high affinity divalent cation binding site near the entrance of the NMDA receptor channel. Neuron. 1996 Apr;16(4):869–880. doi: 10.1016/s0896-6273(00)80107-5. [DOI] [PubMed] [Google Scholar]
- Ransom R. W., Stec N. L. Cooperative modulation of [3H]MK-801 binding to the N-methyl-D-aspartate receptor-ion channel complex by L-glutamate, glycine, and polyamines. J Neurochem. 1988 Sep;51(3):830–836. doi: 10.1111/j.1471-4159.1988.tb01818.x. [DOI] [PubMed] [Google Scholar]
- Reynolds I. J., Miller R. J. [3H]MK801 binding to the NMDA receptor/ionophore complex is regulated by divalent cations: evidence for multiple regulatory sites. Eur J Pharmacol. 1988 Jun 22;151(1):103–112. doi: 10.1016/0014-2999(88)90697-8. [DOI] [PubMed] [Google Scholar]
- Reynolds I. J. Modulation of NMDA receptor responsiveness by neurotransmitters, drugs and chemical modification. Life Sci. 1990;47(20):1785–1792. doi: 10.1016/0024-3205(90)90280-5. [DOI] [PubMed] [Google Scholar]
- Reynolds I. J., Murphy S. N., Miller R. J. 3H-labeled MK-801 binding to the excitatory amino acid receptor complex from rat brain is enhanced by glycine. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7744–7748. doi: 10.1073/pnas.84.21.7744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slater P., McConnell S. E., D'Souza S. W., Barson A. J. Postnatal changes in N-methyl-D-aspartate receptor binding and stimulation by glutamate and glycine of [3H]-MK-801 binding in human temporal cortex. Br J Pharmacol. 1993 Apr;108(4):1143–1149. doi: 10.1111/j.1476-5381.1993.tb13518.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slater P., McConnell S., D'Souza S. W., Barson A. J., Simpson M. D., Gilchrist A. C. Age-related changes in binding to excitatory amino acid uptake site in temporal cortex of human brain. Brain Res Dev Brain Res. 1992 Feb 21;65(2):157–160. doi: 10.1016/0165-3806(92)90174-u. [DOI] [PubMed] [Google Scholar]
- Strecker G. J., Jackson M. B., Dudek F. E. Blockade of NMDA-activated channels by magnesium in the immature rat hippocampus. J Neurophysiol. 1994 Oct;72(4):1538–1548. doi: 10.1152/jn.1994.72.4.1538. [DOI] [PubMed] [Google Scholar]
- Van Lookeren Campagne M., Vermeulen J. P., Boer G. J., Balázs R. Treatment with NMDA receptor antagonists does not affect developmental changes in NMDA receptor properties in vivo. Neurochem Int. 1995 Oct-Nov;27(4-5):355–366. doi: 10.1016/0197-0186(95)00017-3. [DOI] [PubMed] [Google Scholar]
- Williams K., Romano C., Molinoff P. B. Effects of polyamines on the binding of [3H]MK-801 to the N-methyl-D-aspartate receptor: pharmacological evidence for the existence of a polyamine recognition site. Mol Pharmacol. 1989 Oct;36(4):575–581. [PubMed] [Google Scholar]