Skip to main content
Archives of Disease in Childhood. Fetal and Neonatal Edition logoLink to Archives of Disease in Childhood. Fetal and Neonatal Edition
. 1999 Mar;80(2):F148–F154. doi: 10.1136/fn.80.2.f148

Plausible explanations for effects of long chain polyunsaturated fatty acids (LCPUFA) on neonates

L Kurlak, T Stephenson
PMCID: PMC1720895  PMID: 10325796

Full Text

The Full Text of this article is available as a PDF (150.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agostoni C., Trojan S., Bellù R., Riva E., Giovannini M. Neurodevelopmental quotient of healthy term infants at 4 months and feeding practice: the role of long-chain polyunsaturated fatty acids. Pediatr Res. 1995 Aug;38(2):262–266. doi: 10.1203/00006450-199508000-00021. [DOI] [PubMed] [Google Scholar]
  2. Asaoka Y., Yoshida K., Oka M., Shinomura T., Mishima H., Matsushima S., Nishizuka Y. The signal-induced phospholipid degradation cascade and protein kinase C activation. Ciba Found Symp. 1992;164:50–65. doi: 10.1002/9780470514207.ch5. [DOI] [PubMed] [Google Scholar]
  3. Birch D. G., Birch E. E., Hoffman D. R., Uauy R. D. Retinal development in very-low-birth-weight infants fed diets differing in omega-3 fatty acids. Invest Ophthalmol Vis Sci. 1992 Jul;33(8):2365–2376. [PubMed] [Google Scholar]
  4. Birch E., Birch D., Hoffman D., Hale L., Everett M., Uauy R. Breast-feeding and optimal visual development. J Pediatr Ophthalmol Strabismus. 1993 Jan-Feb;30(1):33–38. doi: 10.3928/0191-3913-19930101-09. [DOI] [PubMed] [Google Scholar]
  5. Carlson S. E., Cooke R. J., Rhodes P. G., Peeples J. M., Werkman S. H., Tolley E. A. Long-term feeding of formulas high in linolenic acid and marine oil to very low birth weight infants: phospholipid fatty acids. Pediatr Res. 1991 Nov;30(5):404–412. doi: 10.1203/00006450-199111000-00003. [DOI] [PubMed] [Google Scholar]
  6. Clandinin M. T., Chappell J. E., Leong S., Heim T., Swyer P. R., Chance G. W. Intrauterine fatty acid accretion rates in human brain: implications for fatty acid requirements. Early Hum Dev. 1980 Jun;4(2):121–129. doi: 10.1016/0378-3782(80)90015-8. [DOI] [PubMed] [Google Scholar]
  7. Crawford M. A. The role of essential fatty acids in neural development: implications for perinatal nutrition. Am J Clin Nutr. 1993 May;57(5 Suppl):703S–710S. doi: 10.1093/ajcn/57.5.703S. [DOI] [PubMed] [Google Scholar]
  8. Farquharson J., Cockburn F., Patrick W. A., Jamieson E. C., Logan R. W. Effect of diet on infant subcutaneous tissue triglyceride fatty acids. Arch Dis Child. 1993 Nov;69(5):589–593. doi: 10.1136/adc.69.5.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Foreman-van Drongelen M. M., van Houwelingen A. C., Kester A. D., Hasaart T. H., Blanco C. E., Hornstra G. Long-chain polyunsaturated fatty acids in preterm infants: status at birth and its influence on postnatal levels. J Pediatr. 1995 Apr;126(4):611–618. doi: 10.1016/s0022-3476(95)70363-2. [DOI] [PubMed] [Google Scholar]
  10. Innis S. M., Akrabawi S. S., Diersen-Schade D. A., Dobson M. V., Guy D. G. Visual acuity and blood lipids in term infants fed human milk or formulae. Lipids. 1997 Jan;32(1):63–72. doi: 10.1007/s11745-997-0010-7. [DOI] [PubMed] [Google Scholar]
  11. Innis S. M., Nelson C. M., Rioux M. F., King D. J. Development of visual acuity in relation to plasma and erythrocyte omega-6 and omega-3 fatty acids in healthy term gestation infants. Am J Clin Nutr. 1994 Sep;60(3):347–352. doi: 10.1093/ajcn/60.3.347. [DOI] [PubMed] [Google Scholar]
  12. Jans D. A. The mobile receptor hypothesis revisited: a mechanistic role for hormone receptor lateral mobility in signal transduction. Biochim Biophys Acta. 1992 Dec 11;1113(3-4):271–276. doi: 10.1016/0304-4157(92)90001-q. [DOI] [PubMed] [Google Scholar]
  13. Jensen C. L., Chen H., Fraley J. K., Anderson R. E., Heird W. C. Biochemical effects of dietary linoleic/alpha-linolenic acid ratio in term infants. Lipids. 1996 Jan;31(1):107–113. doi: 10.1007/BF02522419. [DOI] [PubMed] [Google Scholar]
  14. Jørgensen M. H., Hernell O., Lund P., Hølmer G., Michaelsen K. F. Visual acuity and erythrocyte docosahexaenoic acid status in breast-fed and formula-fed term infants during the first four months of life. Lipids. 1996 Jan;31(1):99–105. doi: 10.1007/BF02522418. [DOI] [PubMed] [Google Scholar]
  15. Kim H. Y., Edsall L., Ma Y. C. Specificity of polyunsaturated fatty acid release from rat brain synaptosomes. Lipids. 1996 Mar;31 (Suppl):S229–S233. doi: 10.1007/BF02637081. [DOI] [PubMed] [Google Scholar]
  16. Liebman P. A., Parker K. R., Dratz E. A. The molecular mechanism of visual excitation and its relation to the structure and composition of the rod outer segment. Annu Rev Physiol. 1987;49:765–791. doi: 10.1146/annurev.ph.49.030187.004001. [DOI] [PubMed] [Google Scholar]
  17. Litman B. J., Mitchell D. C. A role for phospholipid polyunsaturation in modulating membrane protein function. Lipids. 1996 Mar;31 (Suppl):S193–S197. doi: 10.1007/BF02637075. [DOI] [PubMed] [Google Scholar]
  18. Lucas A., Morley R., Cole T. J., Gore S. M., Davis J. A., Bamford M. F., Dossetor J. F. Early diet in preterm babies and developmental status in infancy. Arch Dis Child. 1989 Nov;64(11):1570–1578. doi: 10.1136/adc.64.11.1570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lucas A., Morley R., Cole T. J., Lister G., Leeson-Payne C. Breast milk and subsequent intelligence quotient in children born preterm. Lancet. 1992 Feb 1;339(8788):261–264. doi: 10.1016/0140-6736(92)91329-7. [DOI] [PubMed] [Google Scholar]
  20. Lynch M. A., Clements M. P., Voss K. L., Bramham C. R., Bliss T. V. Is arachidonic acid a retrograde messenger in long-term potentiation? Biochem Soc Trans. 1991 Apr;19(2):391–396. doi: 10.1042/bst0190391. [DOI] [PubMed] [Google Scholar]
  21. Makrides M., Neumann M. A., Byard R. W., Simmer K., Gibson R. A. Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. Am J Clin Nutr. 1994 Aug;60(2):189–194. doi: 10.1093/ajcn/60.2.189. [DOI] [PubMed] [Google Scholar]
  22. Martin R. E., Bazan N. G. Changing fatty acid content of growth cone lipids prior to synaptogenesis. J Neurochem. 1992 Jul;59(1):318–325. doi: 10.1111/j.1471-4159.1992.tb08906.x. [DOI] [PubMed] [Google Scholar]
  23. McPhail L. C., Clayton C. C., Snyderman R. A potential second messenger role for unsaturated fatty acids: activation of Ca2+-dependent protein kinase. Science. 1984 May 11;224(4649):622–625. doi: 10.1126/science.6231726. [DOI] [PubMed] [Google Scholar]
  24. Negre-Aminou P., Pfenninger K. H. Arachidonic acid turnover and phospholipase A2 activity in neuronal growth cones. J Neurochem. 1993 Mar;60(3):1126–1136. doi: 10.1111/j.1471-4159.1993.tb03263.x. [DOI] [PubMed] [Google Scholar]
  25. Neuringer M., Connor W. E. n-3 fatty acids in the brain and retina: evidence for their essentiality. Nutr Rev. 1986 Sep;44(9):285–294. doi: 10.1111/j.1753-4887.1986.tb07660.x. [DOI] [PubMed] [Google Scholar]
  26. Schootemeijer A., Gorter G., Tertoolen L. G., De Laat S. W., Akkerman J. W. Relation between membrane fluidity and signal transduction in the human megakaryoblastic cell line MEG-01. Biochim Biophys Acta. 1995 May 24;1236(1):128–134. doi: 10.1016/0005-2736(95)00104-b. [DOI] [PubMed] [Google Scholar]
  27. Slater S. J., Kelly M. B., Yeager M. D., Larkin J., Ho C., Stubbs C. D. Polyunsaturation in cell membranes and lipid bilayers and its effects on membrane proteins. Lipids. 1996 Mar;31 (Suppl):S189–S192. doi: 10.1007/BF02637074. [DOI] [PubMed] [Google Scholar]
  28. Stubbs C. D., Smith A. D. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta. 1984 Jan 27;779(1):89–137. doi: 10.1016/0304-4157(84)90005-4. [DOI] [PubMed] [Google Scholar]
  29. Sun G. Y., Yau T. M. Changes in acyl group composition of diacyl-glycerophosphorylethanolamine, alkenylacyl-glycerophosphorylethanolamine and diacyl-glycerophosphorylcholine in myelin and microsomal fractions of mouse brain during development. J Neurochem. 1976 Feb;26(2):291–295. doi: 10.1111/j.1471-4159.1976.tb04479.x. [DOI] [PubMed] [Google Scholar]
  30. Sunshine C., McNamee M. G. Lipid modulation of nicotinic acetylcholine receptor function: the role of membrane lipid composition and fluidity. Biochim Biophys Acta. 1994 Apr 20;1191(1):59–64. doi: 10.1016/0005-2736(94)90233-x. [DOI] [PubMed] [Google Scholar]
  31. Uauy-Dagach R., Mena P., Hoffman D. R. Essential fatty acid metabolism and requirements for LBW infants. Acta Paediatr Suppl. 1994 Dec;405:78–85. doi: 10.1111/j.1651-2227.1994.tb13403.x. [DOI] [PubMed] [Google Scholar]
  32. Uauy R. D., Birch D. G., Birch E. E., Tyson J. E., Hoffman D. R. Effect of dietary omega-3 fatty acids on retinal function of very-low-birth-weight neonates. Pediatr Res. 1990 Nov;28(5):485–492. doi: 10.1203/00006450-199011000-00014. [DOI] [PubMed] [Google Scholar]
  33. Vaidyanathan V. V., Rao K. V., Sastry P. S. Regulation of diacylglycerol kinase in rat brain membranes by docosahexaenoic acid. Neurosci Lett. 1994 Sep 26;179(1-2):171–174. doi: 10.1016/0304-3940(94)90961-x. [DOI] [PubMed] [Google Scholar]
  34. Willatts P., Forsyth J. S., DiModugno M. K., Varma S., Colvin M. Effect of long-chain polyunsaturated fatty acids in infant formula on problem solving at 10 months of age. Lancet. 1998 Aug 29;352(9129):688–691. doi: 10.1016/s0140-6736(97)11374-5. [DOI] [PubMed] [Google Scholar]
  35. Xu L. Z., Sánchez R., Sali A., Heintz N. Ligand specificity of brain lipid-binding protein. J Biol Chem. 1996 Oct 4;271(40):24711–24719. doi: 10.1074/jbc.271.40.24711. [DOI] [PubMed] [Google Scholar]
  36. Yamamoto N., Saitoh M., Moriuchi A., Nomura M., Okuyama H. Effect of dietary alpha-linolenate/linoleate balance on brain lipid compositions and learning ability of rats. J Lipid Res. 1987 Feb;28(2):144–151. [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood. Fetal and Neonatal Edition are provided here courtesy of BMJ Publishing Group

RESOURCES