Skip to main content
Archives of Disease in Childhood. Fetal and Neonatal Edition logoLink to Archives of Disease in Childhood. Fetal and Neonatal Edition
. 1999 Mar;80(2):F81–F87. doi: 10.1136/fn.80.2.f81

Haemodynamic effects of altering arterial oxygen saturation in preterm infants with respiratory failure

J Skinner, S Hunter, C Poets, D Milligan, D Southall, E Hey
PMCID: PMC1720913  PMID: 10325781

Abstract

AIMS—To examine the haemodynamic effects of brief alteration in arterial oxygenation in preterm infants with respiratory failure.
METHODS—Eighteen preterm infants with respiratory failure, aged 9-76 hours, underwent detailed Doppler echocardiographic assessment at 86%, 96%, and 100% SaO2, achieved by altering the FIO2. Sixteen were receiving intermittent positive pressure ventilation, median FIO2 0.45 (0.20-0.65), median mean airway pressure 12 cm H2O (0-20). SaO2 was stable for 15 minutes at each stage. Four parameters of pulmonary arterial pressure were measured: peak velocity of tricuspid regurgitation and peak velocity of left to right ductal flow, TPV:RVET ratio and PEP:RVET ratio, measured at the pulmonary valve, along with flow velocity integrals at the aortic and pulmonary valves, and systemic arterial pressure. Ductal size was graded into closed, small, moderate, large with imaging, pulsed and continuous wave Doppler.
RESULTS—Between 86% and 96% SaO2, there were no consistent changes, but in three of the 12 with a patent ductus arteriosus (PDA) there was ductal constriction, with complete closure in one. Between 96% and 100% SaO2, peak ductal flow velocity rose significantly in four of eight with a PDA. Ductal constriction occurred in four infants; in three this was associated with a significant fall in aortic flow integral and a rise in aortic pressure (4-6 mm Hg). Overall, 11 infants went from 86% to 100% SaO2 and pulmonary arterial pressure fell significantly in seven.
CONCLUSION—A brief rise in SaO2 within the range maintained by most neonatal units can cause significant ductal constriction. The fall in pulmonary arterial pressure with 100% SaO2 seen in most infants was associated with a fall in pulmonary blood flow (or no change), rather than a rise, indicating that the dominant haemodynamic effect was ductal constriction rather than pulmonary vasodilation.



Full Text

The Full Text of this article is available as a PDF (165.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASHTON N., WARD B., SERPELL G. Effect of oxygen on developing retinal vessels with particular reference to the problem of retrolental fibroplasia. Br J Ophthalmol. 1954 Jul;38(7):397–432. doi: 10.1136/bjo.38.7.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abman S. H., Wolfe R. R., Accurso F. J., Koops B. L., Bowman C. M., Wiggins J. W., Jr Pulmonary vascular response to oxygen in infants with severe bronchopulmonary dysplasia. Pediatrics. 1985 Jan;75(1):80–84. [PubMed] [Google Scholar]
  3. Alverson D. C., Eldridge M. W., Johnson J. D., Aldrich M., Angelus P., Berman W., Jr Noninvasive measurement of cardiac output in healthy preterm and term newborn infants. Am J Perinatol. 1984 Jan;1(2):148–151. doi: 10.1055/s-2007-999991. [DOI] [PubMed] [Google Scholar]
  4. Ashton N., Garner A., Knight G. Intermittent oxygen in retrolental fibroplasia. Am J Ophthalmol. 1971 Jan;71(1 Pt 2):153–160. [PubMed] [Google Scholar]
  5. Benatar A., Clarke J., Silverman M. Pulmonary hypertension in infants with chronic lung disease: non-invasive evaluation and short term effect of oxygen treatment. Arch Dis Child Fetal Neonatal Ed. 1995 Jan;72(1):F14–F19. doi: 10.1136/fn.72.1.f14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bucher H. U., Fanconi S., Baeckert P., Duc G. Hyperoxemia in newborn infants: detection by pulse oximetry. Pediatrics. 1989 Aug;84(2):226–230. [PubMed] [Google Scholar]
  7. CASSIN S., DAWES G. S., MOTT J. C., ROSS B. B., STRANG L. B. THE VASCULAR RESISTANCE OF THE FOETAL AND NEWLY VENTILATED LUNG OF THE LAMB. J Physiol. 1964 May;171:61–79. doi: 10.1113/jphysiol.1964.sp007361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. COOK C. D., DRINKER P. A., JACOBSON H. N., LEVISON H., STRANG L. B. CONTROL OF PULMONARY BLOOD FLOW IN THE FOETAL AND NEWLY BORN LAMB. J Physiol. 1963 Nov;169:10–29. doi: 10.1113/jphysiol.1963.sp007238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dabestani A., Mahan G., Gardin J. M., Takenaka K., Burn C., Allfie A., Henry W. L. Evaluation of pulmonary artery pressure and resistance by pulsed Doppler echocardiography. Am J Cardiol. 1987 Mar 1;59(6):662–668. doi: 10.1016/0002-9149(87)91189-1. [DOI] [PubMed] [Google Scholar]
  10. Evans N. J., Archer L. N. Doppler assessment of pulmonary artery pressure and extrapulmonary shunting in the acute phase of hyaline membrane disease. Arch Dis Child. 1991 Jan;66(1 Spec No):6–11. doi: 10.1136/adc.66.1_spec_no.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Evans N., Kluckow M. Early determinants of right and left ventricular output in ventilated preterm infants. Arch Dis Child Fetal Neonatal Ed. 1996 Mar;74(2):F88–F94. doi: 10.1136/fn.74.2.f88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Flynn J. T., Bancalari E., Snyder E. S., Goldberg R. N., Feuer W., Cassady J., Schiffman J., Feldman H. I., Bachynski B., Buckley E. A cohort study of transcutaneous oxygen tension and the incidence and severity of retinopathy of prematurity. N Engl J Med. 1992 Apr 16;326(16):1050–1054. doi: 10.1056/NEJM199204163261603. [DOI] [PubMed] [Google Scholar]
  13. Friedman D. M., Bierman F. Z., Barst R. Gated pulsed Doppler evaluation of idiopathic pulmonary artery hypertension in children. Am J Cardiol. 1986 Aug 1;58(3):369–370. doi: 10.1016/0002-9149(86)90085-8. [DOI] [PubMed] [Google Scholar]
  14. Halliday H. L., Dumpit F. M., Brady J. P. Effects of inspired oxygen on echocardiographic assessment of pulmonary vascular resistance and myocardial contractility in bronchopulmonary dysplasia. Pediatrics. 1980 Mar;65(3):536–540. [PubMed] [Google Scholar]
  15. Halliday H., Hirschfeld S., Riggs T., Liebman J., Fanaroff A., Bormuth C. Respiratory distress syndrome: echocardiographic assessment of cardiovascular function and pulmonary vascular resistance. Pediatrics. 1977 Oct;60(4):444–449. [PubMed] [Google Scholar]
  16. Hay W. W., Jr, Thilo E., Curlander J. B. Pulse oximetry in neonatal medicine. Clin Perinatol. 1991 Sep;18(3):441–472. [PubMed] [Google Scholar]
  17. Hirschfeld S., Meyer R., Schwartz D. C., Kofhagen J., Kaplan S. The echocardiographic assessment of pulmonary artery pressure and pulmonary vascular resistance. Circulation. 1975 Oct;52(4):642–650. doi: 10.1161/01.cir.52.4.642. [DOI] [PubMed] [Google Scholar]
  18. Houston A. B., Lim M. K., Doig W. B., Gnanapragasam J., Coleman E. N., Jamieson M. P., Pollock J. C. Doppler flow characteristics in the assessment of pulmonary artery pressure in ductus arteriosus. Br Heart J. 1989 Oct;62(4):284–290. doi: 10.1136/hrt.62.4.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kosturakis D., Goldberg S. J., Allen H. D., Loeber C. Doppler echocardiographic prediction of pulmonary arterial hypertension in congenital heart disease. Am J Cardiol. 1984 Apr 1;53(8):1110–1115. doi: 10.1016/0002-9149(84)90646-5. [DOI] [PubMed] [Google Scholar]
  20. MOSS A. J., EMMANOUILIDES G. C., ADAMS F. H., CHUANG K. RESPONSE OF DUCTUS ARTERIOSUS AND PULMONARY AND SYSTEMIC ARTERIAL PRESSURE TO CHANGES IN OXYGEN ENVIRONMENT IN NEWBORN INFANTS. Pediatrics. 1964 Jun;33:937–944. [PubMed] [Google Scholar]
  21. Mellander M., Larsson L. E., Ekström-Jodal B., Sabel K. G. Prediction of symptomatic patent ductus arteriosus in preterm infants using Doppler and M-mode echocardiography. Acta Paediatr Scand. 1987 Jul;76(4):553–559. doi: 10.1111/j.1651-2227.1987.tb10520.x. [DOI] [PubMed] [Google Scholar]
  22. Musewe N. N., Poppe D., Smallhorn J. F., Hellman J., Whyte H., Smith B., Freedom R. M. Doppler echocardiographic measurement of pulmonary artery pressure from ductal Doppler velocities in the newborn. J Am Coll Cardiol. 1990 Feb;15(2):446–456. doi: 10.1016/s0735-1097(10)80076-2. [DOI] [PubMed] [Google Scholar]
  23. PATZ A., EASTHAM A., HIGGINBOTHAM D. H., KLEH T. Oxygen studies in retrolental fibroplasia. II. The production of the microscopic changes of retrolental fibroplasia in experimental animals. Am J Ophthalmol. 1953 Nov;36(11):1511–1522. [PubMed] [Google Scholar]
  24. Poets C. F., Stebbens V. A., Alexander J. R., Arrowsmith W. A., Salfield S. A., Southall D. P. Arterial oxygen saturation in preterm infants at discharge from the hospital and six weeks later. J Pediatr. 1992 Mar;120(3):447–454. doi: 10.1016/s0022-3476(05)80919-9. [DOI] [PubMed] [Google Scholar]
  25. Roberton N. R., Dahlenburg G. W. Ductus arteriosus shunts in the respiratory distress syndrome. Pediatr Res. 1969 Mar;3(2):149–159. doi: 10.1203/00006450-196903000-00007. [DOI] [PubMed] [Google Scholar]
  26. Schulze A., Whyte R. K., Way R. C., Sinclair J. C. Effect of the arterial oxygenation level on cardiac output, oxygen extraction, and oxygen consumption in low birth weight infants receiving mechanical ventilation. J Pediatr. 1995 May;126(5 Pt 1):777–784. doi: 10.1016/s0022-3476(95)70411-6. [DOI] [PubMed] [Google Scholar]
  27. Skinner J. R., Boys R. J., Heads A., Hey E. N., Hunter S. Estimation of pulmonary arterial pressure in the newborn: study of the repeatability of four Doppler echocardiographic techniques. Pediatr Cardiol. 1996 Nov-Dec;17(6):360–369. doi: 10.1007/s002469900080. [DOI] [PubMed] [Google Scholar]
  28. Skinner J. R., Boys R. J., Hunter S., Hey E. N. Non-invasive assessment of pulmonary arterial pressure in healthy neonates. Arch Dis Child. 1991 Apr;66(4 Spec No):386–390. doi: 10.1136/adc.66.4_spec_no.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Skinner J. R., Boys R. J., Hunter S., Hey E. N. Pulmonary and systemic arterial pressure in hyaline membrane disease. Arch Dis Child. 1992 Apr;67(4 Spec No):366–373. doi: 10.1136/adc.67.4_spec_no.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Skinner J. R., Hunter S., Hey E. N. Haemodynamic features at presentation in persistent pulmonary hypertension of the newborn and outcome. Arch Dis Child Fetal Neonatal Ed. 1996 Jan;74(1):F26–F32. doi: 10.1136/fn.74.1.f26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Skinner J. R., Stuart A. G., O'Sullivan J., Heads A., Boys R. J., Hunter S. Right heart pressure determination by Doppler in infants with tricuspid regurgitation. Arch Dis Child. 1993 Aug;69(2):216–220. doi: 10.1136/adc.69.2.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Skinner J. The effects of surfactant on haemodynamics in hyaline membrane disease. Arch Dis Child Fetal Neonatal Ed. 1997 Mar;76(2):F67–F69. doi: 10.1136/fn.76.2.f67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Southall D. P., Bignall S., Stebbens V. A., Alexander J. R., Rivers R. P., Lissauer T. Pulse oximeter and transcutaneous arterial oxygen measurements in neonatal and paediatric intensive care. Arch Dis Child. 1987 Sep;62(9):882–888. doi: 10.1136/adc.62.9.882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stevenson J. G. Comparison of several noninvasive methods for estimation of pulmonary artery pressure. J Am Soc Echocardiogr. 1989 May-Jun;2(3):157–171. doi: 10.1016/s0894-7317(89)80053-7. [DOI] [PubMed] [Google Scholar]
  35. Walther F. J., Benders M. J., Leighton J. O. Early changes in the neonatal circulatory transition. J Pediatr. 1993 Oct;123(4):625–632. doi: 10.1016/s0022-3476(05)80966-7. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood. Fetal and Neonatal Edition are provided here courtesy of BMJ Publishing Group

RESOURCES