Skip to main content
Archives of Disease in Childhood. Fetal and Neonatal Edition logoLink to Archives of Disease in Childhood. Fetal and Neonatal Edition
. 1999 May;80(3):F235–F237. doi: 10.1136/fn.80.3.f235

Serum malondialdehyde concentration in babies with hyperbilirubinaemia

S Yigit, M Yurdakok, K Kilinc, O Oran, G Erdem, G Tekinalp
PMCID: PMC1720933  PMID: 10212090

Abstract

AIM—To determine lipid peroxide concentrations in the first 10 days of life.
METHODS—Malondialdehyde concentrations were investigated in neonates with or without hyperbilirubinaemia during the first 10 days of life.
RESULTS—Serum malondialdehyde concentrations were higher in infants with hyperbilirubinaemia than in controls. A positive correlation was found between malondialdehyde and bilirubin concentrations in the study group. When the study group was categorised according to the presence of haemolysis, a significant correlation was found between malondialdehyde and bilirubin concentrations in those infants with hyperbilirubinaemia due to haemolysis. There was no such correlation in those without haemolysis.
CONCLUSION—Exchange transfusion rapidly produces variable changes in pro-oxidant and antioxidant plasma concentrations in neonates, which may be responsible for free radical metabolism. The fall in malondialdehyde concentration is probably directly related to its exogenous removal by exchange transfusion.



Full Text

The Full Text of this article is available as a PDF (105.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cheeseman K. H., Slater T. F. An introduction to free radical biochemistry. Br Med Bull. 1993 Jul;49(3):481–493. doi: 10.1093/oxfordjournals.bmb.a072625. [DOI] [PubMed] [Google Scholar]
  2. Cooke R. W., Clark D., Hickey-Dwyer M., Weindling A. M. The apparent role of blood transfusions in the development of retinopathy of prematurity. Eur J Pediatr. 1993 Oct;152(10):833–836. doi: 10.1007/BF02073381. [DOI] [PubMed] [Google Scholar]
  3. Esterbauer H., Schaur R. J., Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11(1):81–128. doi: 10.1016/0891-5849(91)90192-6. [DOI] [PubMed] [Google Scholar]
  4. Hansen T. W., Poulsen J. P., Bratlid D. The effects of hypoxanthine, xanthine oxidase and hyperoxia on the accumulation of bilirubin and albumin in young rat brain. Early Hum Dev. 1992 Sep;30(2):171–177. doi: 10.1016/0378-3782(92)90144-6. [DOI] [PubMed] [Google Scholar]
  5. Inder T. E., Darlow B. A., Sluis K. B., Winterbourn C. C., Graham P., Sanderson K. J., Taylor B. J. The correlation of elevated levels of an index of lipid peroxidation (MDA-TBA) with adverse outcome in the very low birthweight infant. Acta Paediatr. 1996 Sep;85(9):1116–1122. doi: 10.1111/j.1651-2227.1996.tb14228.x. [DOI] [PubMed] [Google Scholar]
  6. Inder T. E., Graham P., Sanderson K., Taylor B. J. Lipid peroxidation as a measure of oxygen free radical damage in the very low birthweight infant. Arch Dis Child Fetal Neonatal Ed. 1994 Mar;70(2):F107–F111. doi: 10.1136/fn.70.2.f107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lindeman J. H., Lentjes E. G., Houdkamp E., van Zoeren-Grobben D., Schrijver J., Berger H. M. Effect of an exchange transfusion on plasma antioxidants in the newborn. Pediatrics. 1992 Aug;90(2 Pt 1):200–203. [PubMed] [Google Scholar]
  8. Llesuy S. F., Tomaro M. L. Heme oxygenase and oxidative stress. Evidence of involvement of bilirubin as physiological protector against oxidative damage. Biochim Biophys Acta. 1994 Aug 11;1223(1):9–14. doi: 10.1016/0167-4889(94)90067-1. [DOI] [PubMed] [Google Scholar]
  9. Maines M. D. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 1988 Jul;2(10):2557–2568. [PubMed] [Google Scholar]
  10. McCord J. M., Keele B. B., Jr, Fridovich I. An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc Natl Acad Sci U S A. 1971 May;68(5):1024–1027. doi: 10.1073/pnas.68.5.1024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Newman T. B., Maisels M. J. Evaluation and treatment of jaundice in the term newborn: a kinder, gentler approach. Pediatrics. 1992 May;89(5 Pt 1):809–818. [PubMed] [Google Scholar]
  12. Ossola J. O., Tomaro M. L. Heme oxygenase induction by cadmium chloride: evidence for oxidative stress involvement. Toxicology. 1995 Dec 15;104(1-3):141–147. doi: 10.1016/0300-483x(95)03157-b. [DOI] [PubMed] [Google Scholar]
  13. Phylactos A. C., Leaf A. A., Costeloe K., Crawford M. A. Erythrocyte cupric/zinc superoxide dismutase exhibits reduced activity in preterm and low-birthweight infants at birth. Acta Paediatr. 1995 Dec;84(12):1421–1425. doi: 10.1111/j.1651-2227.1995.tb13580.x. [DOI] [PubMed] [Google Scholar]
  14. Schlenzig J. S., Bervoets K., von Loewenich V., Böhles H. Urinary malondialdehyde concentration in preterm neonates: is there a relationship to disease entities of neonatal intensive care? Acta Paediatr. 1993 Feb;82(2):202–205. doi: 10.1111/j.1651-2227.1993.tb12639.x. [DOI] [PubMed] [Google Scholar]
  15. Stocker R., Ames B. N. Potential role of conjugated bilirubin and copper in the metabolism of lipid peroxides in bile. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8130–8134. doi: 10.1073/pnas.84.22.8130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stocker R., Glazer A. N., Ames B. N. Antioxidant activity of albumin-bound bilirubin. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5918–5922. doi: 10.1073/pnas.84.16.5918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stocker R., Yamamoto Y., McDonagh A. F., Glazer A. N., Ames B. N. Bilirubin is an antioxidant of possible physiological importance. Science. 1987 Feb 27;235(4792):1043–1046. doi: 10.1126/science.3029864. [DOI] [PubMed] [Google Scholar]
  18. Sullivan J. L. Iron, plasma antioxidants, and the 'oxygen radical disease of prematurity'. Am J Dis Child. 1988 Dec;142(12):1341–1344. doi: 10.1001/archpedi.1988.02150120095048. [DOI] [PubMed] [Google Scholar]
  19. Wade C. R., van Rij A. M. Plasma thiobarbituric acid reactivity: reaction conditions and the role of iron, antioxidants and lipid peroxy radicals on the quantitation of plasma lipid peroxides. Life Sci. 1988;43(13):1085–1093. doi: 10.1016/0024-3205(88)90204-4. [DOI] [PubMed] [Google Scholar]
  20. Warner B. B., Wispé J. R. Free radical-mediated diseases in pediatrics. Semin Perinatol. 1992 Feb;16(1):47–57. [PubMed] [Google Scholar]
  21. Willis D., Moore A. R., Frederick R., Willoughby D. A. Heme oxygenase: a novel target for the modulation of the inflammatory response. Nat Med. 1996 Jan;2(1):87–90. doi: 10.1038/nm0196-87. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood. Fetal and Neonatal Edition are provided here courtesy of BMJ Publishing Group

RESOURCES