Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1988 Jan;32(1):37–41. doi: 10.1128/aac.32.1.37

Elimination and tissue distribution of the monosaccharide lipid A precursor, lipid X, in mice and sheep.

D T Golenbock 1, S Ebert 1, J A Will 1, R A Proctor 1
PMCID: PMC172094  PMID: 3348611

Abstract

Lipid X (2,3-diacylglucosamine 1-phosphate) is a novel monosaccharide precursor of lipid A (the active moiety of gram-negative endotoxin) and has been found to be protective against endotoxin administered to mice and sheep and against life-threatening gram-negative infections in mice. Because of the need to design optimal dosing regimens in experimental models of ovine and murine septicemia, the pharmacokinetic profile of lipid X was investigated in sheep and in two strains of mice by using 32P-labeled lipid X. In sheep, peak whole blood lipid X levels after a bolus injection of 100 micrograms of lipid X per kg were 900 ng/ml. An initial rapid distribution phase of 7.98 +/- 0.1 min was observed, followed by a prolonged elimination phase of 3.0 +/- 0.5 h; the area under the curve from time zero to infinity was 428 +/- 27 ng.h/ml. The serum half-lives of lipid X were slightly shorter than whole blood half-lives, suggesting that lipid X associates with cellular elements. Metabolites of lipid X could not be detected in serum over a 4-h period. Lipid X appears to accumulate mainly in the liver, and the tissue distribution of lipid X resembles that of lipopolysaccharide. The elimination rate of lipid X in mice was approximately four times as rapid as that seen in sheep. Lipid X pharmacokinetics in lipopolysaccharide-sensitive DBA/2J mice were virtually identical with those seen in endotoxin-resistant C3H/HeJ mice. The pharmacokinetics described here should greatly aid in the design and interpretation of animal studies investigating the therapeutic applications of lipid X in gram-negative septicemia.

Full text

PDF
37

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRAUDE A. I., CAREY F. J., ZALESKY M. Studies with radioactive endotoxin. II. Correlation of physiologic effects with distribution of radioactivity in rabbits injected with radioactive sodium chromate. J Clin Invest. 1955 Jun;34(6):858–866. doi: 10.1172/JCI103141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berry L. J. Bacterial toxins. CRC Crit Rev Toxicol. 1977 Nov;5(3):239–318. doi: 10.3109/10408447709082601. [DOI] [PubMed] [Google Scholar]
  3. Burhop K. E., Proctor R. A., Helgerson R. B., Raetz C. H., Starling J. R., Will J. A. Pulmonary pathophysiological changes in sheep caused by endotoxin precursor, lipid X. J Appl Physiol (1985) 1985 Dec;59(6):1726–1732. doi: 10.1152/jappl.1985.59.6.1726. [DOI] [PubMed] [Google Scholar]
  4. Chedid L., Parant F., Parant M., Boyer F. Localization and fate of 51-Cr-labeled somatic antigens of smooth and rough Salmonellae. Ann N Y Acad Sci. 1966 Jun 30;133(2):712–726. doi: 10.1111/j.1749-6632.1966.tb52401.x. [DOI] [PubMed] [Google Scholar]
  5. Freudenberg M. A., Freudenberg N., Galanos C. Time course of cellular distribution of endotoxin in liver, lungs and kidneys of rats. Br J Exp Pathol. 1982 Feb;63(1):56–65. [PMC free article] [PubMed] [Google Scholar]
  6. Golenbock D. T., Will J. A., Raetz C. R., Proctor R. A. Lipid X ameliorates pulmonary hypertension and protects sheep from death due to endotoxin. Infect Immun. 1987 Oct;55(10):2471–2476. doi: 10.1128/iai.55.10.2471-2476.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kotani S., Takada H., Tsujimoto M., Ogawa T., Harada K., Mori Y., Kawasaki A., Tanaka A., Nagao S., Tanaka S. Immunobiologically active lipid A analogs synthesized according to a revised structural model of natural lipid A. Infect Immun. 1984 Jul;45(1):293–296. doi: 10.1128/iai.45.1.293-296.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mathison J. C., Ulevitch R. J. In vivo interaction of bacterial lipopolysaccharide (LPS) with rabbit platelets: modulation by C3 and high density lipoproteins. J Immunol. 1981 Apr;126(4):1575–1580. [PubMed] [Google Scholar]
  9. Munford R. S., Andersen J. M., Dietschy J. M. Sites of tissue binding and uptake in vivo of bacterial lipopolysaccharide-high density lipoprotein complexes: studies in the rat and squirrel monkey. J Clin Invest. 1981 Dec;68(6):1503–1513. doi: 10.1172/JCI110404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Munford R. S., Hall C. L., Lipton J. M., Dietschy J. M. Biological activity, lipoprotein-binding behavior, and in vivo disposition of extracted and native forms of Salmonella typhimurium lipopolysaccharides. J Clin Invest. 1982 Oct;70(4):877–888. doi: 10.1172/JCI110684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Musson R. A., Morrison D. C., Ulevitch R. J. Distribution of endotoxin (lipopolysaccharide) in the tissues of lipopolysaccharide-responsive and -unresponsive mice. Infect Immun. 1978 Aug;21(2):448–457. doi: 10.1128/iai.21.2.448-457.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nishijima M., Amano F., Akamatsu Y., Akagawa K., Tokunaga T., Raetz C. R. Macrophage activation by monosaccharide precursors of Escherichia coli lipid A. Proc Natl Acad Sci U S A. 1985 Jan;82(2):282–286. doi: 10.1073/pnas.82.2.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Proctor R. A., Textor J. A. Activation and inhibition of Limulus amebocyte lysate coagulation by chemically defined substructures of lipid A. Infect Immun. 1985 Aug;49(2):286–290. doi: 10.1128/iai.49.2.286-290.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Proctor R. A., Will J. A., Burhop K. E., Raetz C. R. Protection of mice against lethal endotoxemia by a lipid A precursor. Infect Immun. 1986 Jun;52(3):905–907. doi: 10.1128/iai.52.3.905-907.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Raetz C. R., Purcell S., Takayama K. Molecular requirements for B-lymphocyte activation by Escherichia coli lipopolysaccharide. Proc Natl Acad Sci U S A. 1983 Aug;80(15):4624–4628. doi: 10.1073/pnas.80.15.4624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Raetz C. R. The enzymatic synthesis of lipid A: molecular structure and biologic function of monosaccharide precursors. Rev Infect Dis. 1984 Jul-Aug;6(4):463–471. doi: 10.1093/clinids/6.4.463. [DOI] [PubMed] [Google Scholar]
  17. Rousselot C., Parant M., Chedid L. Role des anticorps naturels dans l'épuration sanguine d'endotoxines hybridées, extraites de souches smooth et rough. Ann Inst Pasteur (Paris) 1972 Feb;122(2):179–191. [PubMed] [Google Scholar]
  18. Takayama K., Qureshi N., Mascagni P., Nashed M. A., Anderson L., Raetz C. R. Fatty acyl derivatives of glucosamine 1-phosphate in Escherichia coli and their relation to lipid A. Complete structure of A diacyl GlcN-1-P found in a phosphatidylglycerol-deficient mutant. J Biol Chem. 1983 Jun 25;258(12):7379–7385. [PubMed] [Google Scholar]
  19. Takayama K., Qureshi N., Raetz C. R., Ribi E., Peterson J., Cantrell J. L., Pearson F. C., Wiggins J., Johnson A. G. Influence of fine structure of lipid A on Limulus amebocyte lysate clotting and toxic activities. Infect Immun. 1984 Aug;45(2):350–355. doi: 10.1128/iai.45.2.350-355.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tanamoto K., Zähringer U., McKenzie G. R., Galanos C., Rietschel E. T., Lüderitz O., Kusumoto S., Shiba T. Biological activities of synthetic lipid A analogs: pyrogenicity, lethal toxicity, anticomplement activity, and induction of gelation of Limulus amoebocyte lysate. Infect Immun. 1984 May;44(2):421–426. doi: 10.1128/iai.44.2.421-426.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wightman P. D., Raetz C. R. The activation of protein kinase C by biologically active lipid moieties of lipopolysaccharide. J Biol Chem. 1984 Aug 25;259(16):10048–10052. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES