Skip to main content
Archives of Disease in Childhood. Fetal and Neonatal Edition logoLink to Archives of Disease in Childhood. Fetal and Neonatal Edition
. 1999 Sep;81(2):F110–F115. doi: 10.1136/fn.81.2.f110

Abnormal cerebral haemodynamics in perinatally asphyxiated neonates related to outcome

J Meek, C Elwell, D McCormick, A Edwards, J Townsend, A Stewart, J Wyatt
PMCID: PMC1720987  PMID: 10448178

Abstract

AIM—To measure changes in cerebral haemodynamics during the first 24 hours of life following perinatal asphyxia, and relate them to outcome.
METHODS—Cerebral blood volume (CBV), its response (CBVR) to changes in arterial carbon dioxide tension (PaCO2), and cerebral blood flow (CBF) were measured using near infrared spectroscopy (NIRS) in 27 term newborn infants with clinical and/or biochemical evidence consistent with perinatal asphyxia.
RESULTS—Both CBF and CBV were higher on the first day of life in the infants with adverse outcomes, and a CBV outside the normal range had a sensitivity of 86% for predicting death or disability. The mean (SD) CBVR on the first day of life was 0.13 (0.12) ml/100 g/1/kPa, which, in 71% of infants, was below the lower 95% confidence limit for normal subjects.
CONCLUSION—An increase in CBV on the first day of life is a sensitive predictor of adverse outcome. A reduction in CBVR is almost universally seen following asphyxia, but is not significantly correlated with severity of adverse outcome.



Full Text

The Full Text of this article is available as a PDF (106.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amiel-Tison C., Stewart A. Follow up studies during the first five years of life: a pervasive assessment of neurological function. Arch Dis Child. 1989 Apr;64(4 Spec No):496–502. doi: 10.1136/adc.64.4_spec_no.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Archer L. N., Levene M. I., Evans D. H. Cerebral artery Doppler ultrasonography for prediction of outcome after perinatal asphyxia. Lancet. 1986 Nov 15;2(8516):1116–1118. doi: 10.1016/s0140-6736(86)90528-3. [DOI] [PubMed] [Google Scholar]
  3. Brun N. C., Greisen G. Cerebrovascular responses to carbon dioxide as detected by near-infrared spectrophotometry: comparison of three different measures. Pediatr Res. 1994 Jul;36(1 Pt 1):20–24. doi: 10.1203/00006450-199407001-00004. [DOI] [PubMed] [Google Scholar]
  4. Cooper C. E., Elwell C. E., Meek J. H., Matcher S. J., Wyatt J. S., Cope M., Delpy D. T. The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy. Pediatr Res. 1996 Jan;39(1):32–38. doi: 10.1203/00006450-199601000-00005. [DOI] [PubMed] [Google Scholar]
  5. Cooper C. E., Springett R. Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy. Philos Trans R Soc Lond B Biol Sci. 1997 Jun 29;352(1354):669–676. doi: 10.1098/rstb.1997.0048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cope M., Delpy D. T. System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med Biol Eng Comput. 1988 May;26(3):289–294. doi: 10.1007/BF02447083. [DOI] [PubMed] [Google Scholar]
  7. Duncan A., Meek J. H., Clemence M., Elwell C. E., Tyszczuk L., Cope M., Delpy D. T. Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy. Phys Med Biol. 1995 Feb;40(2):295–304. doi: 10.1088/0031-9155/40/2/007. [DOI] [PubMed] [Google Scholar]
  8. Edwards A. D., Wyatt J. S., Richardson C., Delpy D. T., Cope M., Reynolds E. O. Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy. Lancet. 1988 Oct 1;2(8614):770–771. doi: 10.1016/s0140-6736(88)92418-x. [DOI] [PubMed] [Google Scholar]
  9. Eken P., Toet M. C., Groenendaal F., de Vries L. S. Predictive value of early neuroimaging, pulsed Doppler and neurophysiology in full term infants with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed. 1995 Sep;73(2):F75–F80. doi: 10.1136/fn.73.2.f75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hellström-Westas L., Rosén I., Svenningsen N. W. Predictive value of early continuous amplitude integrated EEG recordings on outcome after severe birth asphyxia in full term infants. Arch Dis Child Fetal Neonatal Ed. 1995 Jan;72(1):F34–F38. doi: 10.1136/fn.72.1.f34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holmqvist P., Plevén H., Svenningsen N. W. Vaginally born low-risk preterm infants: fetal acidosis and outcome at 6 years of age. Acta Paediatr Scand. 1988 Sep;77(5):638–641. doi: 10.1111/j.1651-2227.1988.tb10722.x. [DOI] [PubMed] [Google Scholar]
  12. Horvath I., Sandor N. T., Ruttner Z., McLaughlin A. C. Role of nitric oxide in regulating cerebrocortical oxygen consumption and blood flow during hypercapnia. J Cereb Blood Flow Metab. 1994 May;14(3):503–509. doi: 10.1038/jcbfm.1994.62. [DOI] [PubMed] [Google Scholar]
  13. Laudignon N., Beharry K., Rex J., Aranda J. V. Effect of adenosine on total and regional cerebral blood flow of the newborn piglet. J Cereb Blood Flow Metab. 1990 May;10(3):392–398. doi: 10.1038/jcbfm.1990.69. [DOI] [PubMed] [Google Scholar]
  14. Levene M. I., Fenton A. C., Evans D. H., Archer L. N., Shortland D. B., Gibson N. A. Severe birth asphyxia and abnormal cerebral blood-flow velocity. Dev Med Child Neurol. 1989 Aug;31(4):427–434. doi: 10.1111/j.1469-8749.1989.tb04020.x. [DOI] [PubMed] [Google Scholar]
  15. Levene M. Role of excitatory amino acid antagonists in the management of birth asphyxia. Biol Neonate. 1992;62(4):248–251. doi: 10.1159/000243878. [DOI] [PubMed] [Google Scholar]
  16. Lupton B. A., Hill A., Roland E. H., Whitfield M. F., Flodmark O. Brain swelling in the asphyxiated term newborn: pathogenesis and outcome. Pediatrics. 1988 Aug;82(2):139–146. [PubMed] [Google Scholar]
  17. Marks K. A., Mallard C. E., Roberts I., Williams C. E., Gluckman P. D., Edwards A. D. Nitric oxide synthase inhibition attenuates delayed vasodilation and increases injury after cerebral ischemia in fetal sheep. Pediatr Res. 1996 Aug;40(2):185–191. doi: 10.1203/00006450-199608000-00002. [DOI] [PubMed] [Google Scholar]
  18. Marks K. A., Mallard E. C., Roberts I., Williams C. E., Sirimanne E. S., Johnston B., Gluckman P. D., Edwards A. D. Delayed vasodilation and altered oxygenation after cerebral ischemia in fetal sheep. Pediatr Res. 1996 Jan;39(1):48–54. doi: 10.1203/00006450-199601000-00007. [DOI] [PubMed] [Google Scholar]
  19. Martin E., Buchli R., Ritter S., Schmid R., Largo R. H., Boltshauser E., Fanconi S., Duc G., Rumpel H. Diagnostic and prognostic value of cerebral 31P magnetic resonance spectroscopy in neonates with perinatal asphyxia. Pediatr Res. 1996 Nov;40(5):749–758. doi: 10.1203/00006450-199611000-00015. [DOI] [PubMed] [Google Scholar]
  20. Muttitt S. C., Taylor M. J., Kobayashi J. S., MacMillan L., Whyte H. E. Serial visual evoked potentials and outcome in term birth asphyxia. Pediatr Neurol. 1991 Mar-Apr;7(2):86–90. doi: 10.1016/0887-8994(91)90002-3. [DOI] [PubMed] [Google Scholar]
  21. Nelson K. B., Ellenberg J. H. Apgar scores as predictors of chronic neurologic disability. Pediatrics. 1981 Jul;68(1):36–44. [PubMed] [Google Scholar]
  22. Park T. S., Van Wylen D. G., Rubio R., Berne R. M. Brain interstitial adenosine and sagittal sinus blood flow during systemic hypotension in piglet. J Cereb Blood Flow Metab. 1988 Dec;8(6):822–828. doi: 10.1038/jcbfm.1988.138. [DOI] [PubMed] [Google Scholar]
  23. Patel J., Marks K., Roberts I., Azzopardi D., Edwards A. D. Measurement of cerebral blood flow in newborn infants using near infrared spectroscopy with indocyanine green. Pediatr Res. 1998 Jan;43(1):34–39. doi: 10.1203/00006450-199801000-00006. [DOI] [PubMed] [Google Scholar]
  24. Patel J., Pryds O., Roberts I., Harris D., Edwards A. D. Limited role for nitric oxide in mediating cerebrovascular control of newborn piglets. Arch Dis Child Fetal Neonatal Ed. 1996 Sep;75(2):F82–F86. doi: 10.1136/fn.75.2.f82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Perlman J. M., Volpe J. J. Seizures in the preterm infant: effects on cerebral blood flow velocity, intracranial pressure, and arterial blood pressure. J Pediatr. 1983 Feb;102(2):288–293. doi: 10.1016/s0022-3476(83)80545-9. [DOI] [PubMed] [Google Scholar]
  26. Pourcyrous M., Leffler C., Busija D. Postasphyxial increases in prostanoids in cerebrospinal fluid of piglets. Pediatr Res. 1988 Aug;24(2):229–232. doi: 10.1203/00006450-198808000-00018. [DOI] [PubMed] [Google Scholar]
  27. Pryds O., Greisen G., Lou H., Friis-Hansen B. Vasoparalysis associated with brain damage in asphyxiated term infants. J Pediatr. 1990 Jul;117(1 Pt 1):119–125. doi: 10.1016/s0022-3476(05)72459-8. [DOI] [PubMed] [Google Scholar]
  28. Roth S. C., Baudin J., Pezzani-Goldsmith M., Townsend J., Reynolds E. O., Stewart A. L. Relation between neurodevelopmental status of very preterm infants at one and eight years. Dev Med Child Neurol. 1994 Dec;36(12):1049–1062. doi: 10.1111/j.1469-8749.1994.tb11808.x. [DOI] [PubMed] [Google Scholar]
  29. Roth S. C., Edwards A. D., Cady E. B., Delpy D. T., Wyatt J. S., Azzopardi D., Baudin J., Townsend J., Stewart A. L., Reynolds E. O. Relation between cerebral oxidative metabolism following birth asphyxia, and neurodevelopmental outcome and brain growth at one year. Dev Med Child Neurol. 1992 Apr;34(4):285–295. doi: 10.1111/j.1469-8749.1992.tb11432.x. [DOI] [PubMed] [Google Scholar]
  30. Sato S., Tominaga T., Ohnishi T., Ohnishi S. T. EPR spin-trapping study of nitric oxide formation during bilateral carotid occlusion in the rat. Biochim Biophys Acta. 1993 Apr 30;1181(2):195–197. doi: 10.1016/0925-4439(93)90111-d. [DOI] [PubMed] [Google Scholar]
  31. Svenningsen N. W., Blennow G., Lindroth M., Gäddlin P. O., Ahlström H. Brain-orientated intensive care treatment in severe neonatal asphyxia. Effects of phenobarbitone protection. Arch Dis Child. 1982 Mar;57(3):176–183. doi: 10.1136/adc.57.3.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Takei Y., Edwards A. D., Lorek A., Peebles D. M., Belai A., Cope M., Delpy D. T., Reynolds E. O. Effects of N-omega-nitro-L-arginine methyl ester on the cerebral circulation of newborn piglets quantified in vivo by near-infrared spectroscopy. Pediatr Res. 1993 Sep;34(3):354–359. doi: 10.1203/00006450-199309000-00023. [DOI] [PubMed] [Google Scholar]
  33. Thoresen M., Penrice J., Lorek A., Cady E. B., Wylezinska M., Kirkbride V., Cooper C. E., Brown G. C., Edwards A. D., Wyatt J. S. Mild hypothermia after severe transient hypoxia-ischemia ameliorates delayed cerebral energy failure in the newborn piglet. Pediatr Res. 1995 May;37(5):667–670. doi: 10.1203/00006450-199505000-00019. [DOI] [PubMed] [Google Scholar]
  34. Tsuji M., Naruse H., Volpe J., Holtzman D. Reduction of cytochrome aa3 measured by near-infrared spectroscopy predicts cerebral energy loss in hypoxic piglets. Pediatr Res. 1995 Mar;37(3):253–259. doi: 10.1203/00006450-199503000-00001. [DOI] [PubMed] [Google Scholar]
  35. Wagerle L. C., Mishra O. P. Mechanism of CO2 response in cerebral arteries of the newborn pig: role of phospholipase, cyclooxygenase, and lipoxygenase pathways. Circ Res. 1988 May;62(5):1019–1026. doi: 10.1161/01.res.62.5.1019. [DOI] [PubMed] [Google Scholar]
  36. Wyatt J. S., Cope M., Delpy D. T., Richardson C. E., Edwards A. D., Wray S., Reynolds E. O. Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy. J Appl Physiol (1985) 1990 Mar;68(3):1086–1091. doi: 10.1152/jappl.1990.68.3.1086. [DOI] [PubMed] [Google Scholar]
  37. Wyatt J. S., Edwards A. D., Cope M., Delpy D. T., McCormick D. C., Potter A., Reynolds E. O. Response of cerebral blood volume to changes in arterial carbon dioxide tension in preterm and term infants. Pediatr Res. 1991 Jun;29(6):553–557. doi: 10.1203/00006450-199106010-00007. [DOI] [PubMed] [Google Scholar]
  38. Yager J. Y., Brucklacher R. M., Vannucci R. C. Cerebral energy metabolism during hypoxia-ischemia and early recovery in immature rats. Am J Physiol. 1992 Mar;262(3 Pt 2):H672–H677. doi: 10.1152/ajpheart.1992.262.3.H672. [DOI] [PubMed] [Google Scholar]
  39. Yoxall C. W., Weindling A. M., Dawani N. H., Peart I. Measurement of cerebral venous oxyhemoglobin saturation in children by near-infrared spectroscopy and partial jugular venous occlusion. Pediatr Res. 1995 Sep;38(3):319–323. doi: 10.1203/00006450-199509000-00008. [DOI] [PubMed] [Google Scholar]
  40. van Bel F., Dorrepaal C. A., Benders M. J., Zeeuwe P. E., van de Bor M., Berger H. M. Changes in cerebral hemodynamics and oxygenation in the first 24 hours after birth asphyxia. Pediatrics. 1993 Sep;92(3):365–372. [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood. Fetal and Neonatal Edition are provided here courtesy of BMJ Publishing Group

RESOURCES