Skip to main content
Archives of Disease in Childhood. Fetal and Neonatal Edition logoLink to Archives of Disease in Childhood. Fetal and Neonatal Edition
. 1999 Sep;81(2):F130–F133. doi: 10.1136/fn.81.2.f130

Erythrocyte glutathione S transferase as a marker of oxidative stress at birth

V Neefjes, C Evelo, L Baars, C Blanco
PMCID: PMC1720996  PMID: 10448182

Abstract

AIMS—To determine the level of oxidative stress and cell damage as a result of exposure to O2 at birth.
METHODS—Using glutathione S transferase (GST) as an indicator of oxidative stress, GST activity in cord blood was compared with that in samples taken three hours after birth. Twenty four prematurely born infants and eight full term infants were studied. To test whether stronger effects occur under less favourable conditions, the neonates were divided in three groups: healthy premature; sick premature; and healthy full term infants.
RESULTS—GST activity three hours after birth was significantly decreased compared with that at birth in all three groups tested. There were no significant differences in the magnitude of this effect among the three groups.
CONCLUSIONS—These results indicate that a sudden increase in oxygenation exposes the neonate to oxidative stress. Measurement of GST activity might be useful for the evaluation of protective treatment in trials considering antioxidant strategies.



Full Text

The Full Text of this article is available as a PDF (86.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Awasthi Y. C., Sharma R., Singhal S. S. Human glutathione S-transferases. Int J Biochem. 1994 Mar;26(3):295–308. doi: 10.1016/0020-711x(94)90050-7. [DOI] [PubMed] [Google Scholar]
  2. Brouwer E. J., Evelo C. T., Verplanke A. J., van Welie R. T., de Wolff F. A. Biological effect monitoring of occupational exposure to 1,3-dichloropropene: effects on liver and renal function and on glutathione conjugation. Br J Ind Med. 1991 Mar;48(3):167–172. doi: 10.1136/oem.48.3.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bulkley G. B. Reactive oxygen metabolites and reperfusion injury: aberrant triggering of reticuloendothelial function. Lancet. 1994 Oct 1;344(8927):934–936. doi: 10.1016/s0140-6736(94)92276-4. [DOI] [PubMed] [Google Scholar]
  4. Evelo C. T., Bos R. P., Borm P. J. Decreased glutathione content and glutathione S-transferase activity in red blood cells of coal miners with early stages of pneumoconiosis. Br J Ind Med. 1993 Jul;50(7):633–636. doi: 10.1136/oem.50.7.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Evelo C. T., Palmen N. G., Artur Y., Janssen G. M. Changes in blood glutathione concentrations, and in erythrocyte glutathione reductase and glutathione S-transferase activity after running training and after participation in contests. Eur J Appl Physiol Occup Physiol. 1992;64(4):354–358. doi: 10.1007/BF00636224. [DOI] [PubMed] [Google Scholar]
  6. Fazi A., Accorsi A., Piatti E., Magnani M. Cell age dependent decay of human erythrocytes glutathione S-transferase. Mech Ageing Dev. 1991 May;58(2-3):255–266. doi: 10.1016/0047-6374(91)90097-j. [DOI] [PubMed] [Google Scholar]
  7. Gaetani G. F., Galiano S., Canepa L., Ferraris A. M., Kirkman H. N. Catalase and glutathione peroxidase are equally active in detoxification of hydrogen peroxide in human erythrocytes. Blood. 1989 Jan;73(1):334–339. [PubMed] [Google Scholar]
  8. Habig W. H., Jakoby W. B. Assays for differentiation of glutathione S-transferases. Methods Enzymol. 1981;77:398–405. doi: 10.1016/s0076-6879(81)77053-8. [DOI] [PubMed] [Google Scholar]
  9. Jain S. K. The neonatal erythrocyte and its oxidative susceptibility. Semin Hematol. 1989 Oct;26(4):286–300. [PubMed] [Google Scholar]
  10. Machiedo G. W., Powell R. J., Rush B. F., Jr, Swislocki N. I., Dikdan G. The incidence of decreased red blood cell deformability in sepsis and the association with oxygen free radical damage and multiple-system organ failure. Arch Surg. 1989 Dec;124(12):1386–1389. doi: 10.1001/archsurg.1989.01410120032007. [DOI] [PubMed] [Google Scholar]
  11. Misra H. P., Fridovich I. The generation of superoxide radical during the autoxidation of hemoglobin. J Biol Chem. 1972 Nov 10;247(21):6960–6962. [PubMed] [Google Scholar]
  12. Nycyk J. A., Drury J. A., Cooke R. W. Breath pentane as a marker for lipid peroxidation and adverse outcome in preterm infants. Arch Dis Child Fetal Neonatal Ed. 1998 Jul;79(1):F67–F69. doi: 10.1136/fn.79.1.f67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Poli G., Biasi F., Chiarpotto E., Dianzani M. U., De Luca A., Esterbauer H. Lipid peroxidation in human diseases: evidence of red cell oxidative stress after circulatory shock. Free Radic Biol Med. 1989;6(2):167–170. doi: 10.1016/0891-5849(89)90113-5. [DOI] [PubMed] [Google Scholar]
  14. Ricci G., Lo Bello M., Caccurri A. M., Pastore A., Nuccetelli M., Parker M. W., Federici G. Site-directed mutagenesis of human glutathione transferase P1-1. Mutation of Cys-47 induces a positive cooperativity in glutathione transferase P1-1. J Biol Chem. 1995 Jan 20;270(3):1243–1248. doi: 10.1074/jbc.270.3.1243. [DOI] [PubMed] [Google Scholar]
  15. Ripalda M. J., Rudolph N., Wong S. L. Developmental patterns of antioxidant defense mechanisms in human erythrocytes. Pediatr Res. 1989 Oct;26(4):366–369. doi: 10.1203/00006450-198910000-00016. [DOI] [PubMed] [Google Scholar]
  16. Spooren A. A., Evelo C. T. In vitro haematotoxic effects of three methylated hydroxylamines. Arch Toxicol. 1997;71(5):299–305. doi: 10.1007/s002040050390. [DOI] [PubMed] [Google Scholar]
  17. Strange R. C., Johnston J. D., Coghill D. R., Hume R. A comparison of erythrocyte glutathione S-transferase activity from human foetuses and adults. Biochem J. 1980 May 15;188(2):475–479. doi: 10.1042/bj1880475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tamai K., Satoh K., Tsuchida S., Hatayama I., Maki T., Sato K. Specific inactivation of glutathione S-transferases in class Pi by SH-modifiers. Biochem Biophys Res Commun. 1990 Feb 28;167(1):331–338. doi: 10.1016/0006-291x(90)91769-o. [DOI] [PubMed] [Google Scholar]
  19. Turrens J. F., Freeman B. A., Crapo J. D. Hyperoxia increases H2O2 release by lung mitochondria and microsomes. Arch Biochem Biophys. 1982 Sep;217(2):411–421. doi: 10.1016/0003-9861(82)90519-7. [DOI] [PubMed] [Google Scholar]
  20. Van Kampen E. J., Zijlstra W. G. Determination of hemoglobin and its derivatives. Adv Clin Chem. 1965;8:141–187. doi: 10.1016/s0065-2423(08)60414-x. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood. Fetal and Neonatal Edition are provided here courtesy of BMJ Publishing Group

RESOURCES