Abstract
AIM—To investigate sodium (NA+) potassium (K+) adenosine triphosphatase (ATPase) activity in newborn infants at different gestational ages, to elucidate the mechanism underlying poor renal sodium conservation in preterm infants. METHODS—Fifty three healthy newborn infants, gestational age 30-42 weeks, were studied. Umbilical cord red blood cell Na+ K+ATPase activity, plasma renin activity, and plasma aldosterone activities were measured in all of them. Red blood cell Na+ K+ATPase activity was re-examined in eight preterm infants, one and two weeks after birth. Total and ouabain sensitive ATPase activity was measured spectrophotometrically using a method that couples ATP hydrolysis with NADH oxidation. RESULTS—Red blood cell Na+ K+ATPase activity was significantly lower (p<0.01) in preterm babies with a gestational age below 35 weeks, compared with those with aged 35 weeks and above: 2.3 (0.8) and 6.7 (1.3) nmol NADH/minute/mg protein, respectively. There was no correlation between gestational age, Na+ K+ATPase, plasma renin activity and aldosterone values either in the preterm or term babies. Two weeks after birth, irrespective of gestational age, the enzyme activity of the preterm babies increased to values similar to those observed in the term neonates at birth. CONCLUSION—The differences in sodium homeostasis between term and preterm babies are modulated via changes in Na+ K+ATPase activity.
Full Text
The Full Text of this article is available as a PDF (84.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Al-Dahhan J., Haycock G. B., Chantler C., Stimmler L. Sodium homeostasis in term and preterm neonates. I. Renal aspects. Arch Dis Child. 1983 May;58(5):335–342. doi: 10.1136/adc.58.5.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Al-Dahhan J., Haycock G. B., Nichol B., Chantler C., Stimmler L. Sodium homeostasis in term and preterm neonates. III. Effect of salt supplementation. Arch Dis Child. 1984 Oct;59(10):945–950. doi: 10.1136/adc.59.10.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aladjem M., Spitzer A., Goldsmith D. I. The relationship between intravascular volume expansion and natriuresis in developing puppies. Pediatr Res. 1982 Oct;16(10):840–845. doi: 10.1203/00006450-198210000-00008. [DOI] [PubMed] [Google Scholar]
- Aperia A., Broberger O., Elinder G., Herin P., Zetterström R. Postnatal development of renal function in pre-term and full-term infants. Acta Paediatr Scand. 1981 Mar;70(2):183–187. doi: 10.1111/j.1651-2227.1981.tb05539.x. [DOI] [PubMed] [Google Scholar]
- Aperia A., Broberger O., Herin P., Zetterström R. Salt content in human breast milk during the three first weeks after delivery. Acta Paediatr Scand. 1979 May;68(3):441–442. doi: 10.1111/j.1651-2227.1979.tb05034.x. [DOI] [PubMed] [Google Scholar]
- Aperia A., Broberger O., Herin P., Zetterström R. Sodium excretion in relation to sodium intake and aldosterone excretion in newborn pre-term and full-term infants. Acta Paediatr Scand. 1979 Nov;68(6):813–817. doi: 10.1111/j.1651-2227.1979.tb08217.x. [DOI] [PubMed] [Google Scholar]
- Aperia A., Broberger O., Thodenius K., Zetterström R. Renal control of sodium and fluid balance in newborn infants during intravenous maintenance therapy. Acta Paediatr Scand. 1975 Sep;64(5):725–731. doi: 10.1111/j.1651-2227.1975.tb03911.x. [DOI] [PubMed] [Google Scholar]
- Aperia A., Broberger O., Thodenius K., Zetterström R. Renal response to an oral sodium load in newborn full term infants. Acta Paediatr Scand. 1972 Nov;61(6):670–676. doi: 10.1111/j.1651-2227.1972.tb15965.x. [DOI] [PubMed] [Google Scholar]
- Aperia A., Broberger U. Beta-2-microglobulin, an indicator of renal tubular maturation and dysfunction in the newborn. Acta Paediatr Scand. 1979 Sep;68(5):669–676. doi: 10.1111/j.1651-2227.1979.tb18436.x. [DOI] [PubMed] [Google Scholar]
- Arant B. S., Jr Developmental patterns of renal functional maturation compared in the human neonate. J Pediatr. 1978 May;92(5):705–712. doi: 10.1016/s0022-3476(78)80133-4. [DOI] [PubMed] [Google Scholar]
- Barker P. M., Gowen C. W., Lawson E. E., Knowles M. R. Decreased sodium ion absorption across nasal epithelium of very premature infants with respiratory distress syndrome. J Pediatr. 1997 Mar;130(3):373–377. doi: 10.1016/s0022-3476(97)70198-7. [DOI] [PubMed] [Google Scholar]
- Bistritzer T., Evans S., Cotariu D., Goldberg M., Aladjem M. Reduced Na+, K(+)-ATPase activity in patients with pseudohypoaldosteronism. Pediatr Res. 1994 Mar;35(3):372–375. doi: 10.1203/00006450-199403000-00021. [DOI] [PubMed] [Google Scholar]
- Bursey R. G., Watson M. L. The effect of sodium restriction during gestation of offspring brain development in rats. Am J Clin Nutr. 1983 Jan;37(1):43–51. doi: 10.1093/ajcn/37.1.43. [DOI] [PubMed] [Google Scholar]
- Cugini P., Natoli G., Gerlini G., Di Palma L., Rota R., D'Onofrio M., Verna R. Erythrocyte transmembrane Na and K fluxes in pseudohypoaldosteronism. Biochem Med Metab Biol. 1992 Dec;48(3):241–254. doi: 10.1016/0885-4505(92)90071-6. [DOI] [PubMed] [Google Scholar]
- DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
- Day G. M., Radde I. C., Balfe J. W., Chance G. W. Electrolyte abnormalities in very low birthweight infants. Pediatr Res. 1976 May;10(5):522–526. doi: 10.1203/00006450-197605000-00003. [DOI] [PubMed] [Google Scholar]
- Dila C. J., Pappius H. M. Cerebral water and electrolytes. An experimental model of inappropriate secretion of antidiuretic hormone. Arch Neurol. 1972 Jan;26(1):85–90. doi: 10.1001/archneur.1972.00490070103013. [DOI] [PubMed] [Google Scholar]
- Dillon M. J., Gillin M. E., Ryness J. M., de Swiet M. Plasma renin activity and aldosterone concentration in the human newborn. Arch Dis Child. 1976 Jul;51(7):537–540. doi: 10.1136/adc.51.7.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubowitz L. M., Dubowitz V., Goldberg C. Clinical assessment of gestational age in the newborn infant. J Pediatr. 1970 Jul;77(1):1–10. doi: 10.1016/s0022-3476(70)80038-5. [DOI] [PubMed] [Google Scholar]
- Engelke S. C., Shah B. L., Vasan U., Raye J. R. Sodium balance in very low-birth-weight infants. J Pediatr. 1978 Nov;93(5):837–841. doi: 10.1016/s0022-3476(78)81097-x. [DOI] [PubMed] [Google Scholar]
- Goldsmith D. I., Drukker A., Blaufox M. D., Edelmann C. M., Jr, Spitzer A. Hemodynamic and excretory response of the neonatal canine kidney to acute volume expansion. Am J Physiol. 1979 Nov;237(5):F392–F397. doi: 10.1152/ajprenal.1979.237.5.F392. [DOI] [PubMed] [Google Scholar]
- Honour J. W., Valman H. B., Shackleton H. L. Aldosterone and sodium HOMEOSTASIS in preterm infants. Acta Paediatr Scand. 1977 Jan;66(1):103–109. doi: 10.1111/j.1651-2227.1977.tb07815.x. [DOI] [PubMed] [Google Scholar]
- Jørgensen P. L. Structure, function and regulation of Na,K-ATPase in the kidney. Kidney Int. 1986 Jan;29(1):10–20. doi: 10.1038/ki.1986.3. [DOI] [PubMed] [Google Scholar]
- MACDONALD M. S., EMERY J. L. The late intrauterine and postnatal development of human renal glomeruli. J Anat. 1959 Jul;93:331–340. [PMC free article] [PubMed] [Google Scholar]
- Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
- Roy R. N., Chance G. W., Radde I. C., Hill D. E., Willis D. M., Sheepers J. Late hyponatremia in very low birthweight infants. (less than 1.3 kilograms). Pediatr Res. 1976 May;10(5):526–531. doi: 10.1203/00006450-197605000-00004. [DOI] [PubMed] [Google Scholar]
- Rymer M. M., Fishman R. A. Protective adaptation of brain to water intoxication. Arch Neurol. 1973 Jan;28(1):49–54. doi: 10.1001/archneur.1973.00490190067009. [DOI] [PubMed] [Google Scholar]
- Schanler R. J., Oh W. Composition of breast milk obtained from mothers of premature infants as compared to breast milk obtained from donors. J Pediatr. 1980 Apr;96(4):679–681. doi: 10.1016/s0022-3476(80)80738-4. [DOI] [PubMed] [Google Scholar]
- Schmidt U., Horster M. Na-K-activated ATPase: activity maturation in rabbit nephron segments dissected in vitro. Am J Physiol. 1977 Jul;233(1):F55–F60. doi: 10.1152/ajprenal.1977.233.1.F55. [DOI] [PubMed] [Google Scholar]
- Schoner W., von Ilberg C., Kramer R., Seubert W. On the mechanism of Na+- and K+-stimulated hydrolysis of adenosine triphosphate. 1. Purification and properties of a Na+-and K+-activated ATPase from ox brain. Eur J Biochem. 1967 May;1(3):334–343. doi: 10.1007/978-3-662-25813-2_45. [DOI] [PubMed] [Google Scholar]
- Siegel S. R., Oh W. Renal function as a marker of human fetal maturation. Acta Paediatr Scand. 1976 Jul;65(4):481–485. doi: 10.1111/j.1651-2227.1976.tb04917.x. [DOI] [PubMed] [Google Scholar]
- Spitzer A. The role of the kidney in sodium homeostasis during maturation. Kidney Int. 1982 Apr;21(4):539–545. doi: 10.1038/ki.1982.60. [DOI] [PubMed] [Google Scholar]
- Sulyok E. The relationship between electrolyte and acid-base balance in the premature infant during early postnatal life. Biol Neonate. 1971;17(3):227–237. doi: 10.1159/000240316. [DOI] [PubMed] [Google Scholar]
- Thodenius K. Renal control of sodium homeostasis in infancy. Acta Paediatr Scand Suppl. 1974;(253):1–28. doi: 10.1111/j.1651-2227.1974.tb05719.x. [DOI] [PubMed] [Google Scholar]
- Thurston J. H., Hauhart R. E., Jones E. M., Ater J. L. Effects of salt and water loading on carbohydrate and energy metabolism and levels of selected amino acids in the brains of young mice. J Neurochem. 1975 May;24(5):953–957. doi: 10.1111/j.1471-4159.1975.tb03661.x. [DOI] [PubMed] [Google Scholar]