Skip to main content
Archives of Disease in Childhood. Fetal and Neonatal Edition logoLink to Archives of Disease in Childhood. Fetal and Neonatal Edition
. 2000 Jan;82(1):F24–F28. doi: 10.1136/fn.82.1.F24

Randomised controlled trial of postnatal sodium supplementation on body composition in 25 to 30 week gestational age infants

G Hartnoll, P Betremieux, N Modi
PMCID: PMC1721041  PMID: 10634837

Abstract

AIMS—To compare the effects of early and delayed sodium supplementation on body composition and body water compartments during the first two weeks of postnatal life.
METHODS—Preterm infants of 25-30 weeks' gestation were stratified and randomly assigned according to gender and gestational age, to receive a sodium intake of 4 mmol/kg/day beginning either on the second day after birth or when weight loss of 6% of birthweight had been achieved. Daily sodium intake, total fluid intake, energy intake, urine volume, and urinary sodium excretion were recorded. Total body water was measured by H218O dilution on days 1, 7, and 14, and extracellular fluid volume by sodium bromide dilution on days 1 and 14.
RESULTS—Twenty four infants received early, and 22 delayed, sodium supplementation. There were no significant differences between the groups in body water compartments on day 1. In the delayed group, but not the early group, there was a significant loss of total body water during the first week (delayed −44 ml/kg, p=0.048; early 6 ml/kg, p=0.970). By day 14 the delayed, but not the early group, also had a significant reduction in extracellular fluid volume (delayed −53 ml/kg, p=0.01; early −37 ml/kg, p=0.2). These changes resulted in a significant alteration in body composition at the end of the first week (total body weight: delayed 791 ml/kg; early 849 ml/kg, p=0.013). By day 14 there were once again no significant differences in body composition between the two groups.
CONCLUSIONS—Body composition after preterm birth is influenced by the timing of introduction of routine sodium supplements. Early sodium supplementation can delay the physiological loss of body water that is part of normal postnatal adaptation. This is likely to be of particular relevance to babies with respiratory distress syndrome. A tailored approach to clinical management, delaying the introduction of routine sodium supplements until there has been postnatal loss of body water, is recommended.



Full Text

The Full Text of this article is available as a PDF (121.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Dahhan J., Haycock G. B., Chantler C., Stimmler L. Sodium homeostasis in term and preterm neonates. I. Renal aspects. Arch Dis Child. 1983 May;58(5):335–342. doi: 10.1136/adc.58.5.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bauer K., Bovermann G., Roithmaier A., Götz M., Pröiss A., Versmold H. T. Body composition, nutrition, and fluid balance during the first two weeks of life in preterm neonates weighing less than 1500 grams. J Pediatr. 1991 Apr;118(4 Pt 1):615–620. doi: 10.1016/s0022-3476(05)83390-6. [DOI] [PubMed] [Google Scholar]
  3. Bauer K., Cowett R. M., Howard G. M., vanEpp J., Oh W. Effect of intrauterine growth retardation on postnatal weight change in preterm infants. J Pediatr. 1993 Aug;123(2):301–306. doi: 10.1016/s0022-3476(05)81707-x. [DOI] [PubMed] [Google Scholar]
  4. Bauer K., Versmold H. Postnatal weight loss in preterm neonates less than 1,500 g is due to isotonic dehydration of the extracellular volume. Acta Paediatr Scand Suppl. 1989;360:37–42. doi: 10.1111/j.1651-2227.1989.tb11280.x. [DOI] [PubMed] [Google Scholar]
  5. Bell E. F., Ziegler E. E., Forbes G. B. Corrected bromide space. Pediatr Res. 1984 Apr;18(4):392–393. doi: 10.1203/00006450-198404000-00021. [DOI] [PubMed] [Google Scholar]
  6. Boehm G., Wiener M., Schmidt C., Ungethüm A., Ungethüm B., Moro G. Usefulness of short-term urine collection in the nutritional monitoring of low birthweight infants. Acta Paediatr. 1998 Mar;87(3):339–343. doi: 10.1080/08035259850157435. [DOI] [PubMed] [Google Scholar]
  7. Cheek D. B., Wishart J., MacLennan A. H., Haslam R. Cell hydration in the normally grown, the premature and the low weight for gestational age infant. Early Hum Dev. 1984 Sep;10(1-2):75–84. doi: 10.1016/0378-3782(84)90113-0. [DOI] [PubMed] [Google Scholar]
  8. Costarino A. T., Jr, Gruskay J. A., Corcoran L., Polin R. A., Baumgart S. Sodium restriction versus daily maintenance replacement in very low birth weight premature neonates: a randomized, blind therapeutic trial. J Pediatr. 1992 Jan;120(1):99–106. doi: 10.1016/s0022-3476(05)80611-0. [DOI] [PubMed] [Google Scholar]
  9. Green T. P., Thompson T. R., Johnson D. E., Lock J. E. Diuresis and pulmonary function in premature infants with respiratory distress syndrome. J Pediatr. 1983 Oct;103(4):618–623. doi: 10.1016/s0022-3476(83)80601-5. [DOI] [PubMed] [Google Scholar]
  10. Heimler R., Doumas B. T., Jendrzejczak B. M., Nemeth P. B., Hoffman R. G., Nelin L. D. Relationship between nutrition, weight change, and fluid compartments in preterm infants during the first week of life. J Pediatr. 1993 Jan;122(1):110–114. doi: 10.1016/s0022-3476(05)83502-4. [DOI] [PubMed] [Google Scholar]
  11. Langman C. B., Engle W. D., Baumgart S., Fox W. W., Polin R. A. The diuretic phase of respiratory distress syndrome and its relationship to oxygenation. J Pediatr. 1981 Mar;98(3):462–466. doi: 10.1016/s0022-3476(81)80723-8. [DOI] [PubMed] [Google Scholar]
  12. Midgley J., Modi N., Littleton P., Carter N., Royston P., Smith A. Atrial natriuretic peptide, cyclic guanosine monophosphate and sodium excretion during postnatal adaptation in male infants below 34 weeks gestation with severe respiratory distress syndrome. Early Hum Dev. 1992 Feb;28(2):145–154. doi: 10.1016/0378-3782(92)90109-t. [DOI] [PubMed] [Google Scholar]
  13. Prosser S. J., Brookes S. T., Linton A., Preston T. Rapid, automated analysis of 13C and 18O of CO2 in gas samples by continuous-flow, isotope ratio mass spectrometry. Biol Mass Spectrom. 1991 Nov;20(11):724–730. doi: 10.1002/bms.1200201112. [DOI] [PubMed] [Google Scholar]
  14. Rees L., Shaw J. C., Brook C. G., Forsling M. L. Hyponatraemia in the first week of life in preterm infants. Part II. Sodium and water balance. Arch Dis Child. 1984 May;59(5):423–429. doi: 10.1136/adc.59.5.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Robillard J. E., Smith F. G., Segar J. L., Guillery E. N., Jose P. A. Mechanisms regulating renal sodium excretion during development. Pediatr Nephrol. 1992 Mar;6(2):205–213. doi: 10.1007/BF00866320. [DOI] [PubMed] [Google Scholar]
  16. Shaffer S. G., Bradt S. K., Hall R. T. Postnatal changes in total body water and extracellular volume in the preterm infant with respiratory distress syndrome. J Pediatr. 1986 Sep;109(3):509–514. doi: 10.1016/s0022-3476(86)80133-0. [DOI] [PubMed] [Google Scholar]
  17. Shaffer S. G., Ekblad H., Brans Y. W. Estimation of extracellular fluid volume by bromide dilution in infants less than 1000 grams birth weight. Early Hum Dev. 1991 Nov;27(1-2):19–24. doi: 10.1016/0378-3782(91)90024-w. [DOI] [PubMed] [Google Scholar]
  18. Shaffer S. G., Meade V. M. Sodium balance and extracellular volume regulation in very low birth weight infants. J Pediatr. 1989 Aug;115(2):285–290. doi: 10.1016/s0022-3476(89)80087-3. [DOI] [PubMed] [Google Scholar]
  19. Singhi S., Sood V., Bhakoo O. N., Ganguly N. K., Kaur A. Composition of postnatal weight loss & subsequent weight gain in preterm infants. Indian J Med Res. 1995 Apr;101:157–162. [PubMed] [Google Scholar]
  20. Spitzer A. R., Fox W. W., Delivoria-Papadopoulos M. Maximum diuresis--a factor in predicting recovery from respiratory distress syndrome and the development of bronchopulmonary dysplasia. J Pediatr. 1981 Mar;98(3):476–479. doi: 10.1016/s0022-3476(81)80728-7. [DOI] [PubMed] [Google Scholar]
  21. Spitzer A. The role of the kidney in sodium homeostasis during maturation. Kidney Int. 1982 Apr;21(4):539–545. doi: 10.1038/ki.1982.60. [DOI] [PubMed] [Google Scholar]
  22. Sulyok E., Varga F., Györy E., Jobst K., Csaba I. F. Postnatal development of renal sodium handling in premature infants. J Pediatr. 1979 Nov;95(5 Pt 1):787–792. doi: 10.1016/s0022-3476(79)80737-4. [DOI] [PubMed] [Google Scholar]
  23. Tang W., Modi N., Clark P. Dilution kinetics of H(2)18O for the measurement of total body water in preterm babies in the first week after birth. Arch Dis Child. 1993 Jul;69(1 Spec No):28–31. doi: 10.1136/adc.69.1_spec_no.28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tang W., Ridout D., Modi N. Influence of respiratory distress syndrome on body composition after preterm birth. Arch Dis Child Fetal Neonatal Ed. 1997 Jul;77(1):F28–F31. doi: 10.1136/fn.77.1.f28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. al Rubeyi B., Murray N., Modi N. A variable dextrose delivery system for neonatal intensive care. Arch Dis Child Fetal Neonatal Ed. 1994 Jan;70(1):F79–F79. doi: 10.1136/fn.70.1.f79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. vd Wagen A., Okken A., Zweens J., Zijlstra W. G. Composition of postnatal weight loss and subsequent weight gain in small for dates newborn infants. Acta Paediatr Scand. 1985 Jan;74(1):57–61. doi: 10.1111/j.1651-2227.1985.tb10921.x. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood. Fetal and Neonatal Edition are provided here courtesy of BMJ Publishing Group

RESOURCES