Skip to main content
Archives of Disease in Childhood. Fetal and Neonatal Edition logoLink to Archives of Disease in Childhood. Fetal and Neonatal Edition
. 2000 May;82(3):F188–F194. doi: 10.1136/fn.82.3.F188

Low superior vena cava flow and intraventricular haemorrhage in preterm infants

M Kluckow, N Evans
PMCID: PMC1721081  PMID: 10794784

Abstract

OBJECTIVES—To document the incidence, timing, degree, and associations of systemic hypoperfusion in the preterm infant and to explore the temporal relation between low systemic blood flow and the development of intraventricular haemorrhage (IVH).
STUDY DESIGN—126 babies born before 30 weeks' gestation (mean 27 weeks, mean body weight 991 g) were studied with Doppler echocardiography and cerebral ultrasound at 5, 12, 24, and 48 hours of age. Superior vena cava (SVC) flow was assessed by Doppler echocardiography as the primary measure of systemic blood flow returning from the upper body and brain. Other measures included colour Doppler diameters of ductal and atrial shunts, as well as Doppler assessment of shunt direction and velocity, and right and left ventricular outputs. Upper body vascular resistance was calculated from mean blood pressure and SVC flow.
RESULTS—SVC flow below the range recorded in well preterm babies was common in the first 24 hours (48 (38%) babies), becoming significantly less common by 48 hours (6 (5%) babies). These low flows were significantly associated with lower gestation, higher upper body vascular resistance, larger diameter ductal shunts, and higher mean airway pressure. Babies whose mothers had received antihypertensives had significantly higher SVC flow during the first 24 hours. Early IVH was already present in 9 babies at 5 hours of age. Normal SVC flows were seen in these babies except in 3 with IVH, which later extended, who all had SVC flow below the normal range at 5 and/or 12 hours. Eight of these 9 babies were delivered vaginally. Late IVH developed in 18 babies. 13 of 14 babies with grade 2to 4 IVH had SVC flow below the normal range before development of an IVH. Two of 4 babies with grade 1 IVH also had SVC flow below the normal range before developing IVH, and the other 2had SVC flow in the low normal range. In all, IVH was first seen after the SVC flow had improved, and the grade of IVH related significantly to the severity and duration of low SVC flow. The 9 babies who had SVC flow below the normal range and did not develop IVH or periventricular leucomalacia were considerably more mature (median gestation 28 v 25weeks).
CONCLUSIONS—Low SVC flow may result from an immature myocardium struggling to adapt to increased extrauterine vascular resistances. Critically low flow occurs when this is compounded by high mean airway pressure and large ductal shunts out of the systemic circulation. Late IVH is strongly associated with these low flow states and occurs as perfusion improves.


Full Text

The Full Text of this article is available as a PDF (157.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agata Y., Hiraishi S., Oguchi K., Misawa H., Horiguchi Y., Fujino N., Yashiro K., Shimada N. Changes in left ventricular output from fetal to early neonatal life. J Pediatr. 1991 Sep;119(3):441–445. doi: 10.1016/s0022-3476(05)82060-8. [DOI] [PubMed] [Google Scholar]
  2. Biondi J. W., Schulman D. S., Soufer R., Matthay R. A., Hines R. L., Kay H. R., Barash P. G. The effect of incremental positive end-expiratory pressure on right ventricular hemodynamics and ejection fraction. Anesth Analg. 1988 Feb;67(2):144–151. [PubMed] [Google Scholar]
  3. Dhainaut J. F., Devaux J. Y., Monsallier J. F., Brunet F., Villemant D., Huyghebaert M. F. Mechanisms of decreased left ventricular preload during continuous positive pressure ventilation in ARDS. Chest. 1986 Jul;90(1):74–80. doi: 10.1378/chest.90.1.74. [DOI] [PubMed] [Google Scholar]
  4. Drayton M. R., Skidmore R. Vasoactivity of the major intracranial arteries in newborn infants. Arch Dis Child. 1987 Mar;62(3):236–240. doi: 10.1136/adc.62.3.236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Evans N., Iyer P. Assessment of ductus arteriosus shunt in preterm infants supported by mechanical ventilation: effect of interatrial shunting. J Pediatr. 1994 Nov;125(5 Pt 1):778–785. doi: 10.1016/s0022-3476(94)70078-8. [DOI] [PubMed] [Google Scholar]
  6. Evans N., Iyer P. Incompetence of the foramen ovale in preterm infants supported by mechanical ventilation. J Pediatr. 1994 Nov;125(5 Pt 1):786–792. doi: 10.1016/s0022-3476(94)70079-6. [DOI] [PubMed] [Google Scholar]
  7. Evans N., Kluckow M. Early determinants of right and left ventricular output in ventilated preterm infants. Arch Dis Child Fetal Neonatal Ed. 1996 Mar;74(2):F88–F94. doi: 10.1136/fn.74.2.f88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Evans N., Kluckow M. Early ductal shunting and intraventricular haemorrhage in ventilated preterm infants. Arch Dis Child Fetal Neonatal Ed. 1996 Nov;75(3):F183–F186. doi: 10.1136/fn.75.3.f183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Friedman W. F. The intrinsic physiologic properties of the developing heart. Prog Cardiovasc Dis. 1972 Jul-Aug;15(1):87–111. doi: 10.1016/0033-0620(72)90006-0. [DOI] [PubMed] [Google Scholar]
  10. Funato M., Tamai H., Noma K., Kurita T., Kajimoto Y., Yoshioka Y., Shimada S. Clinical events in association with timing of intraventricular hemorrhage in preterm infants. J Pediatr. 1992 Oct;121(4):614–619. doi: 10.1016/s0022-3476(05)81157-6. [DOI] [PubMed] [Google Scholar]
  11. Goddard-Finegold J., Armstrong D., Zeller R. S. Intraventricular hemorrhage, following volume expansion after hypovolemic hypotension in the newborn beagle. J Pediatr. 1982 May;100(5):796–799. doi: 10.1016/s0022-3476(82)80596-9. [DOI] [PubMed] [Google Scholar]
  12. Hartikainen-Sorri A. L., Heikkinen J. E., Koivisto M. Pharmacokinetics of clonidine during pregnancy and nursing. Obstet Gynecol. 1987 Apr;69(4):598–600. [PubMed] [Google Scholar]
  13. Hawkins J., Van Hare G. F., Schmidt K. G., Rudolph A. M. Effects of increasing afterload on left ventricular output in fetal lambs. Circ Res. 1989 Jul;65(1):127–134. doi: 10.1161/01.res.65.1.127. [DOI] [PubMed] [Google Scholar]
  14. Henning R. J. Effects of positive end-expiratory pressure on the right ventricle. J Appl Physiol (1985) 1986 Sep;61(3):819–826. doi: 10.1152/jappl.1986.61.3.819. [DOI] [PubMed] [Google Scholar]
  15. Kluckow M., Evans N. Relationship between blood pressure and cardiac output in preterm infants requiring mechanical ventilation. J Pediatr. 1996 Oct;129(4):506–512. doi: 10.1016/s0022-3476(96)70114-2. [DOI] [PubMed] [Google Scholar]
  16. Lee L. A., Kimball T. R., Daniels S. R., Khoury P., Meyer R. A. Left ventricular mechanics in the preterm infant and their effect on the measurement of cardiac performance. J Pediatr. 1992 Jan;120(1):114–119. doi: 10.1016/s0022-3476(05)80613-4. [DOI] [PubMed] [Google Scholar]
  17. Liedholm H., Wåhlin-Boll E., Hanson A., Ingemarsson I., Melander A. Transplacental passage and breast milk concentrations of hydralazine. Eur J Clin Pharmacol. 1982;21(5):417–419. doi: 10.1007/BF00542329. [DOI] [PubMed] [Google Scholar]
  18. Lou H. C. On the pathogenesis of germinal layer hemorrhage in the neonate. APMIS Suppl. 1993;40:97–102. [PubMed] [Google Scholar]
  19. Lou H. C., Skov H., Pedersen H. Low cerebral blood flow: a risk factor in the neonate. J Pediatr. 1979 Oct;95(4):606–609. doi: 10.1016/s0022-3476(79)80779-9. [DOI] [PubMed] [Google Scholar]
  20. Ment L. R., Oh W., Ehrenkranz R. A., Philip A. G., Vohr B., Allan W., Duncan C. C., Scott D. T., Taylor K. J., Katz K. H. Low-dose indomethacin and prevention of intraventricular hemorrhage: a multicenter randomized trial. Pediatrics. 1994 Apr;93(4):543–550. [PubMed] [Google Scholar]
  21. Ment L. R., Oh W., Philip A. G., Ehrenkranz R. A., Duncan C. C., Allan W., Taylor K. J., Schneider K., Katz K. H., Makuch R. W. Risk factors for early intraventricular hemorrhage in low birth weight infants. J Pediatr. 1992 Nov;121(5 Pt 1):776–783. doi: 10.1016/s0022-3476(05)81915-8. [DOI] [PubMed] [Google Scholar]
  22. Ment L. R., Stewart W. B., Duncan C. C., Lambrecht R. Beagle puppy model of intraventricular hemorrhage. J Neurosurg. 1982 Aug;57(2):219–223. doi: 10.3171/jns.1982.57.2.0219. [DOI] [PubMed] [Google Scholar]
  23. Murphy D. J., Squier M. V., Hope P. L., Sellers S., Johnson A. Clinical associations and time of onset of cerebral white matter damage in very preterm babies. Arch Dis Child Fetal Neonatal Ed. 1996 Jul;75(1):F27–F32. doi: 10.1136/fn.75.1.f27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nelson K. B., Grether J. K. Can magnesium sulfate reduce the risk of cerebral palsy in very low birthweight infants? Pediatrics. 1995 Feb;95(2):263–269. [PubMed] [Google Scholar]
  25. Perlman J. M., McMenamin J. B., Volpe J. J. Fluctuating cerebral blood-flow velocity in respiratory-distress syndrome. Relation to the development of intraventricular hemorrhage. N Engl J Med. 1983 Jul 28;309(4):204–209. doi: 10.1056/NEJM198307283090402. [DOI] [PubMed] [Google Scholar]
  26. Pryds O., Greisen G., Lou H., Friis-Hansen B. Heterogeneity of cerebral vasoreactivity in preterm infants supported by mechanical ventilation. J Pediatr. 1989 Oct;115(4):638–645. doi: 10.1016/s0022-3476(89)80301-4. [DOI] [PubMed] [Google Scholar]
  27. Rozé J. C., Tohier C., Maingueneau C., Lefèvre M., Mouzard A. Response to dobutamine and dopamine in the hypotensive very preterm infant. Arch Dis Child. 1993 Jul;69(1 Spec No):59–63. doi: 10.1136/adc.69.1_spec_no.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shaver D. C., Bada H. S., Korones S. B., Anderson G. D., Wong S. P., Arheart K. L. Early and late intraventricular hemorrhage: the role of obstetric factors. Obstet Gynecol. 1992 Nov;80(5):831–837. [PubMed] [Google Scholar]
  29. Takahashi Y., Harada K., Kishkurno S., Arai H., Ishida A., Takada G. Postnatal left ventricular contractility in very low birth weight infants. Pediatr Cardiol. 1997 Mar-Apr;18(2):112–117. doi: 10.1007/s002469900127. [DOI] [PubMed] [Google Scholar]
  30. Takashima S., Tanaka K. Microangiography and vascular permeability of the subependymal matrix in the premature infant. Can J Neurol Sci. 1978 Feb;5(1):45–50. [PubMed] [Google Scholar]
  31. Tyszczuk L., Meek J., Elwell C., Wyatt J. S. Cerebral blood flow is independent of mean arterial blood pressure in preterm infants undergoing intensive care. Pediatrics. 1998 Aug;102(2 Pt 1):337–341. doi: 10.1542/peds.102.2.337. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood. Fetal and Neonatal Edition are provided here courtesy of BMJ Publishing Group

RESOURCES