Skip to main content
Archives of Disease in Childhood. Fetal and Neonatal Edition logoLink to Archives of Disease in Childhood. Fetal and Neonatal Edition
. 2000 May;82(3):F182–F187. doi: 10.1136/fn.82.3.F182

Superior vena cava flow in newborn infants: a novel marker of systemic blood flow

M Kluckow, N Evans
PMCID: PMC1721083  PMID: 10794783

Abstract

BACKGROUND—Ventricular outputs cannot be used to assess systemic blood flow in preterm infants because they are confounded by shunts through the ductus arteriosus and atrial septum. However, flow measurements in the superior vena cava (SVC) can assess blood returning from the upper body and brain.
OBJECTIVES—To describe a Doppler echocardiographic technique that measures blood flow in the SVC, to test its reproducibility, and to establish normal ranges.
DESIGN—SVC flow was assessed together with right ventricular output and atrial or ductal shunting. Normal range was established in 14 infants born after 36 weeks' gestation (2 measurements taken in the first 48 hours) and 25 uncomplicated infants born before 30 weeks (4 measurements taken in the first 48 hours). Intra-observer and interobserver variability were tested in 20 preterm infants.
RESULTS—In 14 infants born after 36 weeks, median SVC flow rose from 76 ml/kg/min on day 1 to 93 ml/kg/min on day 2; in 25 uncomplicated very preterm infants, it rose from 62 ml/kg/min at 5 hours to 86 ml/kg/min at 48 hours. The lowest SVC flow for the preterm babies rose from 30 ml/kg/min at 5 hours to 46 ml/kg/min by 48hours. Median intra-observer and interobserver variability were 8.1% and 14%, respectively. In preterm babies with a closed duct, SVC flow was a mean of 37% of left ventricular output and the two measures correlated significantly.
CONCLUSIONS—This technique can assess blood flow from the upper body, including the brain, in the crucial early postnatal period, and might allow more accurate assessment of the status of systemic blood flow and response to treatment.


Full Text

The Full Text of this article is available as a PDF (202.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alverson D. C., Eldridge M. W., Johnson J. D., Aldrich M., Angelus P., Berman W., Jr Noninvasive measurement of cardiac output in healthy preterm and term newborn infants. Am J Perinatol. 1984 Jan;1(2):148–151. doi: 10.1055/s-2007-999991. [DOI] [PubMed] [Google Scholar]
  2. Claflin K. S., Alverson D. C., Pathak D., Angelus P., Backstrom C., Werner S. Cardiac output determinations in the newborn. Reproducibility of the pulsed Doppler velocity measurement. J Ultrasound Med. 1988 Jun;7(6):311–315. doi: 10.7863/jum.1988.7.6.311. [DOI] [PubMed] [Google Scholar]
  3. Cohen M. L., Cohen B. S., Kronzon I., Lighty G. W., Winer H. E. Superior vena caval blood flow velocities in adults: a Doppler echocardiographic study. J Appl Physiol (1985) 1986 Jul;61(1):215–219. doi: 10.1152/jappl.1986.61.1.215. [DOI] [PubMed] [Google Scholar]
  4. Drayton M. R., Skidmore R. Vasoactivity of the major intracranial arteries in newborn infants. Arch Dis Child. 1987 Mar;62(3):236–240. doi: 10.1136/adc.62.3.236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Evans N. J., Archer L. N. Postnatal circulatory adaptation in healthy term and preterm neonates. Arch Dis Child. 1990 Jan;65(1 Spec No):24–26. doi: 10.1136/adc.65.1_spec_no.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Evans N., Iyer P. Assessment of ductus arteriosus shunt in preterm infants supported by mechanical ventilation: effect of interatrial shunting. J Pediatr. 1994 Nov;125(5 Pt 1):778–785. doi: 10.1016/s0022-3476(94)70078-8. [DOI] [PubMed] [Google Scholar]
  7. Evans N., Iyer P. Incompetence of the foramen ovale in preterm infants supported by mechanical ventilation. J Pediatr. 1994 Nov;125(5 Pt 1):786–792. doi: 10.1016/s0022-3476(94)70079-6. [DOI] [PubMed] [Google Scholar]
  8. Evans N., Kluckow M. Early determinants of right and left ventricular output in ventilated preterm infants. Arch Dis Child Fetal Neonatal Ed. 1996 Mar;74(2):F88–F94. doi: 10.1136/fn.74.2.f88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Froysaker T. Abnormal flow pattern in the superior vena cava induced by arrhythmias. A peroperative flowmetric study in man. Scand J Thorac Cardiovasc Surg. 1972;6(2):140–148. doi: 10.3109/14017437209134792. [DOI] [PubMed] [Google Scholar]
  10. Froysaker T. Normal flow pattern in the superior vena cava in man during thoracotomy. Scand J Thorac Cardiovasc Surg. 1972;6(1):22–32. doi: 10.3109/14017437209134286. [DOI] [PubMed] [Google Scholar]
  11. Froysaker T. The influence of constrictive pericarditis on the superior vena caval flow pattern. Scand J Thorac Cardiovasc Surg. 1972;6(3):227–233. doi: 10.3109/14017437209134804. [DOI] [PubMed] [Google Scholar]
  12. Fröysaker T., Cappelen C., Jr Flow pattern in central and peripheral human veins. A pilot study. Scand J Thorac Cardiovasc Surg. 1970;4(3):262–266. doi: 10.3109/14017437009131941. [DOI] [PubMed] [Google Scholar]
  13. Gindea A. J., Slater J., Kronzon I. Doppler echocardiographic flow velocity measurements in the superior vena cava during the Valsalva maneuver in normal subjects. Am J Cardiol. 1990 Jun 1;65(20):1387–1391. doi: 10.1016/0002-9149(90)91333-2. [DOI] [PubMed] [Google Scholar]
  14. Hudson I., Houston A., Aitchison T., Holland B., Turner T. Reproducibility of measurements of cardiac output in newborn infants by Doppler ultrasound. Arch Dis Child. 1990 Jan;65(1 Spec No):15–19. doi: 10.1136/adc.65.1_spec_no.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kluckow M., Evans N. Low superior vena cava flow and intraventricular haemorrhage in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2000 May;82(3):F188–F194. doi: 10.1136/fn.82.3.F188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kluckow M., Evans N. Relationship between blood pressure and cardiac output in preterm infants requiring mechanical ventilation. J Pediatr. 1996 Oct;129(4):506–512. doi: 10.1016/s0022-3476(96)70114-2. [DOI] [PubMed] [Google Scholar]
  17. Machi J., Sigel B., Beitler J. C., Coelho J. C., Justin J. R. Relation of in vivo blood flow to ultrasound echogenicity. J Clin Ultrasound. 1983 Jan;11(1):3–10. doi: 10.1002/jcu.1870110103. [DOI] [PubMed] [Google Scholar]
  18. Mellander M., Sabel K. G., Caidahl K., Solymar L., Eriksson B. Doppler determination of cardiac output in infants and children: comparison with simultaneous thermodilution. Pediatr Cardiol. 1987;8(4):241–246. doi: 10.1007/BF02427536. [DOI] [PubMed] [Google Scholar]
  19. Meyer R. J., Goldberg S. J., Donnerstein R. L. Superior vena cava and hepatic vein velocity patterns in normal children. Am J Cardiol. 1993 Jul 15;72(2):238–240. doi: 10.1016/0002-9149(93)90170-h. [DOI] [PubMed] [Google Scholar]
  20. Minich L. L., Tani L. Y., Shaddy R. E., Snider A. R. Doppler systemic venous flow patterns: changes in children with mild/moderate pulmonic stenosis. J Am Soc Echocardiogr. 1996 Nov-Dec;9(6):814–818. doi: 10.1016/s0894-7317(96)90472-1. [DOI] [PubMed] [Google Scholar]
  21. Mohiaddin R. H., Wann S. L., Underwood R., Firmin D. N., Rees S., Longmore D. B. Vena caval flow: assessment with cine MR velocity mapping. Radiology. 1990 Nov;177(2):537–541. doi: 10.1148/radiology.177.2.2217797. [DOI] [PubMed] [Google Scholar]
  22. Morgan B. C., Abel F. L., Mullins G. L., Guntheroth W. G. Flow patterns in cavae, pulmonary artery, pulmonary vein, and aorta in intact dogs. Am J Physiol. 1966 Apr;210(4):903–909. doi: 10.1152/ajplegacy.1966.210.4.903. [DOI] [PubMed] [Google Scholar]
  23. Oppo K., Leen E., Angerson W. J., Cooke T. G., McArdle C. S. Doppler perfusion index: an interobserver and intraobserver reproducibility study. Radiology. 1998 Aug;208(2):453–457. doi: 10.1148/radiology.208.2.9680575. [DOI] [PubMed] [Google Scholar]
  24. Reed K. L., Appleton C. P., Anderson C. F., Shenker L., Sahn D. J. Doppler studies of vena cava flows in human fetuses. Insights into normal and abnormal cardiac physiology. Circulation. 1990 Feb;81(2):498–505. doi: 10.1161/01.cir.81.2.498. [DOI] [PubMed] [Google Scholar]
  25. Salim M. A., DiSessa T. G., Arheart K. L., Alpert B. S. Contribution of superior vena caval flow to total cardiac output in children. A Doppler echocardiographic study. Circulation. 1995 Oct 1;92(7):1860–1865. doi: 10.1161/01.cir.92.7.1860. [DOI] [PubMed] [Google Scholar]
  26. Subhedar N. V., Shaw N. J. Intraobserver variation in Doppler ultrasound assessment of pulmonary artery pressure. Arch Dis Child Fetal Neonatal Ed. 1996 Jul;75(1):F59–F61. doi: 10.1136/fn.75.1.f59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tekay A., Jouppila P. Intraobserver variation in transvaginal Doppler blood flow measurements in benign ovarian tumors. Ultrasound Obstet Gynecol. 1997 Feb;9(2):120–124. doi: 10.1046/j.1469-0705.1997.09020120.x. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood. Fetal and Neonatal Edition are provided here courtesy of BMJ Publishing Group

RESOURCES