Abstract
BACKGROUND—Hepatic glucose-6-phosphatase activity is low at birth, and in term infants rises rapidly to adult levels. In contrast, in most preterm infants, it remains low postnatally making them vulnerable to repeated hypoglycaemic episodes, resultant cerebral damage, or risk of sudden and unexpected death. AIMS—To investigate the clinical features of preterm infants with low glucose-6-phosphatase enzyme activity to determine the influencing factors. METHODS—Clinical data from 36 preterm infants were correlated by stepwise multiple regression analysis with Vmax of hepatic glucose-6-phosphatase as the dependent variable. RESULTS—The most significant correlation was with the administration of insulin (units/kg/h postnatal life) with lesser effects of respiratory distress syndrome and dopamine administration. The Vmax changes reflected changes in the level of expression of the glucose-6-phosphatase protein. CONCLUSION—In a variety of animal models, hepatic glucose-6-phosphatase levels have been shown to decrease in response to insulin, which also decreases transcription of the glucose-6-phosphatase gene. The association of insulin administration with high levels of hepatic glucose-6-phosphatase activity and protein expression was therefore most unexpected. Results from model systems, or adults, must be extrapolated to the metabolism of preterm infants with caution.
Full Text
The Full Text of this article is available as a PDF (111.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burchell A., Allan B. B., Hume R. Glucose-6-phosphatase proteins of the endoplasmic reticulum. Mol Membr Biol. 1994 Oct-Dec;11(4):217–227. doi: 10.3109/09687689409160431. [DOI] [PubMed] [Google Scholar]
- Burchell A., Cain D. I. Rat hepatic microsomal glucose-6-phosphatase protein levels are increased in streptozotocin-induced diabetes. Diabetologia. 1985 Nov;28(11):852–856. doi: 10.1007/BF00291077. [DOI] [PubMed] [Google Scholar]
- Burchell A., Gibb L., Waddell I. D., Giles M., Hume R. The ontogeny of human hepatic microsomal glucose-6-phosphatase proteins. Clin Chem. 1990 Sep;36(9):1633–1637. [PubMed] [Google Scholar]
- Burchell A., Hume R., Burchell B. A new microtechnique for the analysis of the human hepatic microsomal glucose-6-phosphatase system. Clin Chim Acta. 1988 Apr 15;173(2):183–191. doi: 10.1016/0009-8981(88)90256-2. [DOI] [PubMed] [Google Scholar]
- Burchell A., Lyall H., Busuttil A., Bell E., Hume R. Glucose metabolism and hypoglycaemia in SIDS. J Clin Pathol. 1992 Nov;45(11 Suppl):39–45. [PubMed] [Google Scholar]
- Burchell A. The molecular basis of the type 1 glycogen storage diseases. Bioessays. 1992 Jun;14(6):395–400. doi: 10.1002/bies.950140609. [DOI] [PubMed] [Google Scholar]
- Burrow G. N., Fisher D. A., Larsen P. R. Maternal and fetal thyroid function. N Engl J Med. 1994 Oct 20;331(16):1072–1078. doi: 10.1056/NEJM199410203311608. [DOI] [PubMed] [Google Scholar]
- Countaway J. L., Waddell I. D., Burchell A., Arion W. J. The phosphohydrolase component of the hepatic microsomal glucose-6-phosphatase system is a 36.5-kilodalton polypeptide. J Biol Chem. 1988 Feb 25;263(6):2673–2678. [PubMed] [Google Scholar]
- Cowett R. M. Neonatal hypoglycemia: a little goes a long way. J Pediatr. 1999 Apr;134(4):389–391. doi: 10.1016/s0022-3476(99)70193-9. [DOI] [PubMed] [Google Scholar]
- Duvanel C. B., Fawer C. L., Cotting J., Hohlfeld P., Matthieu J. M. Long-term effects of neonatal hypoglycemia on brain growth and psychomotor development in small-for-gestational-age preterm infants. J Pediatr. 1999 Apr;134(4):492–498. doi: 10.1016/s0022-3476(99)70209-x. [DOI] [PubMed] [Google Scholar]
- Haber B. A., Chin S., Chuang E., Buikhuisen W., Naji A., Taub R. High levels of glucose-6-phosphatase gene and protein expression reflect an adaptive response in proliferating liver and diabetes. J Clin Invest. 1995 Feb;95(2):832–841. doi: 10.1172/JCI117733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hume R., Burchell A. Abnormal expression of glucose-6-phosphatase in preterm infants. Arch Dis Child. 1993 Feb;68(2):202–204. doi: 10.1136/adc.68.2.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hume R., Lyall H., Giles M., Burchell A. Impairment of the activity of the hepatic microsomal glucose-6-phosphatase system in three preterm infants. Acta Paediatr. 1992 Aug;81(8):580–584. doi: 10.1111/j.1651-2227.1992.tb12304.x. [DOI] [PubMed] [Google Scholar]
- Hume R., McGeechan A., Burchell A. Failure to detect preterm infants at risk of hypoglycemia before discharge. J Pediatr. 1999 Apr;134(4):499–502. doi: 10.1016/s0022-3476(99)70210-6. [DOI] [PubMed] [Google Scholar]
- James E. J., Raye J. R., Gresham E. L., Makowski E. L., Meschia G., Battaglia F. C. Fetal oxygen consumption, carbon dioxide production, and glucose uptake in a chronic sheep preparation. Pediatrics. 1972 Sep;50(3):361–371. [PubMed] [Google Scholar]
- Lucas A., Bloom S. R., Aynsley-Green A. Metabolic and endocrine events at the time of the first feed of human milk in preterm and term infants. Arch Dis Child. 1978 Sep;53(9):731–736. doi: 10.1136/adc.53.9.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lucas A., Morley R., Cole T. J. Adverse neurodevelopmental outcome of moderate neonatal hypoglycaemia. BMJ. 1988 Nov 19;297(6659):1304–1308. doi: 10.1136/bmj.297.6659.1304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lyall H., Burchell A., Howie P. W., Ogston S., Hume R. Early detection of metabolic abnormalities in preterm infants impaired by disorders of blood glucose concentrations. Clin Chem. 1994 Apr;40(4):526–530. [PubMed] [Google Scholar]
- Marten N. W., Sladek F. M., Straus D. S. Effect of dietary protein restriction on liver transcription factors. Biochem J. 1996 Jul 15;317(Pt 2):361–370. doi: 10.1042/bj3170361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NORDLIE R. C., ARION W. J. LIVER MICROSOMAL GLUCOSE 6-PHOSPHATASE, INORGANIC PYROPHOSPHATASE, AND PYROPHOSPHATE-GLUCOSE PHOSPHOTRANSFERASE. 3. ASSOCIATED NUCLEOSIDE TRIPHOSPHATE- AND NUCLEOSIDE DIPHOSPHATE-GLUCOSE PHOSPHOTRANSFERASE ACTIVITIES. J Biol Chem. 1965 May;240:2155–2164. [PubMed] [Google Scholar]
- Nordlie R. C., Sukalski K. A., Muñoz J. M., Baldwin J. J. Type Ic, a novel glycogenosis. Underlying mechanism. J Biol Chem. 1983 Aug 25;258(16):9739–9744. [PubMed] [Google Scholar]
- Pears J. S., Jung R. T., Hopwood D., Waddell I. D., Burchell A. Glycogen storage disease diagnosed in adults. Q J Med. 1992 Mar;82(299):207–222. [PubMed] [Google Scholar]
- Ruttimann Y., Schutz Y., Jéquier E., Lemarchand T., Chioléro R. Thermogenic and metabolic effects of dopamine in healthy men. Crit Care Med. 1991 Aug;19(8):1030–1036. doi: 10.1097/00003246-199108000-00010. [DOI] [PubMed] [Google Scholar]
- SMALLPEICE V., DAVIES P. A. IMMEDIATE FEEDING OF PREMATURE INFANTS WITH UNDILUTED BREAST-MILK. Lancet. 1964 Dec 26;2(7374):1349–1352. doi: 10.1016/s0140-6736(64)91152-3. [DOI] [PubMed] [Google Scholar]
- Schmoll D., Allan B. B., Burchell A. Cloning and sequencing of the 5' region of the human glucose-6-phosphatase gene: transcriptional regulation by cAMP, insulin and glucocorticoids in H4IIE hepatoma cells. FEBS Lett. 1996 Mar 25;383(1-2):63–66. doi: 10.1016/0014-5793(96)00224-4. [DOI] [PubMed] [Google Scholar]
- Schmoll D., Wasner C., Hinds C. J., Allan B. B., Walther R., Burchell A. Identification of a cAMP response element within the glucose- 6-phosphatase hydrolytic subunit gene promoter which is involved in the transcriptional regulation by cAMP and glucocorticoids in H4IIE hepatoma cells. Biochem J. 1999 Mar 1;338(Pt 2):457–463. [PMC free article] [PubMed] [Google Scholar]
- Schmoll D., Watkins S. L., Wasner C., Walther R., Burchell A. Glucose induces glucose 6-phosphatase hydrolytic subunit gene transcription in an insulinoma cell line (INS-1). FEBS Lett. 1999 Jan 22;443(1):53–56. doi: 10.1016/s0014-5793(98)01678-0. [DOI] [PubMed] [Google Scholar]
- Sperling M. A., DeLamater P. V., Phelps D., Fiser R. H., Oh W., Fisher D. A. Spontaneous and amino acid-stimulated glucagon secretion in the immediate postnatal period. Relation to glucose and insulin. J Clin Invest. 1974 Apr;53(4):1159–1166. doi: 10.1172/JCI107654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Srinivasan G., Pildes R. S., Cattamanchi G., Voora S., Lilien L. D. Plasma glucose values in normal neonates: a new look. J Pediatr. 1986 Jul;109(1):114–117. doi: 10.1016/s0022-3476(86)80588-1. [DOI] [PubMed] [Google Scholar]
- Vionnet N., Stoffel M., Takeda J., Yasuda K., Bell G. I., Zouali H., Lesage S., Velho G., Iris F., Passa P. Nonsense mutation in the glucokinase gene causes early-onset non-insulin-dependent diabetes mellitus. Nature. 1992 Apr 23;356(6371):721–722. doi: 10.1038/356721a0. [DOI] [PubMed] [Google Scholar]
- WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]
