Skip to main content
Archives of Disease in Childhood. Fetal and Neonatal Edition logoLink to Archives of Disease in Childhood. Fetal and Neonatal Edition
. 2000 May;82(3):F224–F227. doi: 10.1136/fn.82.3.F224

Anoxic ATP depletion in neonatal mice brainstem is prevented by creatine supplementation

B Wilken, J Ramirez, I Probst, D Richter, F Hanefeld
PMCID: PMC1721092  PMID: 10794791

Abstract

BACKGROUND—Sufficient ATP concentrations maintain physiological processes and protect tissue from hypoxic damage. With decreasing oxygen concentration, ATP synthesis relies increasingly on the presence of phosphocreatine.
AIM—The effect of exogenously applied creatine on phosphocreatine and ATP concentrations was studied under control and anoxic conditions.
METHODS—Pregnant mice were fed orally with creatine monohydrate (2 g/kg body weight/day). Brainstem slices from these mice pups were compared with those from pups of non-creatine supplemented pregnant mice. Measurements were performed under normoxic and anoxic conditions. In addition, brainstem slices from non-creatine treated mice pups were incubated for 3 hours in control artificial cerebrospinal fluid (CSF) (n = 10) or in artificial CSF containing 200 µM creatine (n = 10). ATP and phosphocreatine contents were determined enzymatically in single brainstem slices.
RESULTS—ATP concentrations were in the same range in all preparations. However, there was a significant increase of phosphocreatine in the brainstems from pups of creatine fed mice when compared with the brainstems of pups from non-creatine treated mice or in non-incubated brainstems of control animals. After 30 minutes anoxia, ATP as well as phosphocreatine concentrations remained significantly higher in creatine pretreated slices compared with controls.
CONCLUSION—The data indicate that exogenous application of creatine is effective in neuroprotection.



Full Text

The Full Text of this article is available as a PDF (131.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balestrino M. Pathophysiology of anoxic depolarization: new findings and a working hypothesis. J Neurosci Methods. 1995 Jun;59(1):99–103. doi: 10.1016/0165-0270(94)00199-q. [DOI] [PubMed] [Google Scholar]
  2. Balestrino M., Rebaudo R., Lunardi G. Exogenous creatine delays anoxic depolarization and protects from hypoxic damage: dose-effect relationship. Brain Res. 1999 Jan 16;816(1):124–130. doi: 10.1016/s0006-8993(98)01131-7. [DOI] [PubMed] [Google Scholar]
  3. Bessman S. P., Carpenter C. L. The creatine-creatine phosphate energy shuttle. Annu Rev Biochem. 1985;54:831–862. doi: 10.1146/annurev.bi.54.070185.004151. [DOI] [PubMed] [Google Scholar]
  4. Duffy T. E., Kohle S. J., Vannucci R. C. Carbohydrate and energy metabolism in perinatal rat brain: relation to survival in anoxia. J Neurochem. 1975 Feb;24(2):271–276. doi: 10.1111/j.1471-4159.1975.tb11875.x. [DOI] [PubMed] [Google Scholar]
  5. Erecińska M., Silver I. A. ATP and brain function. J Cereb Blood Flow Metab. 1989 Feb;9(1):2–19. doi: 10.1038/jcbfm.1989.2. [DOI] [PubMed] [Google Scholar]
  6. Holtzman D., Tsuji M., Wallimann T., Hemmer W. Functional maturation of creatine kinase in rat brain. Dev Neurosci. 1993;15(3-5):261–270. doi: 10.1159/000111343. [DOI] [PubMed] [Google Scholar]
  7. Jensen F., Tsuji M., Offutt M., Firkusny I., Holtzman D. Profound, reversible energy loss in the hypoxic immature rat brain. Brain Res Dev Brain Res. 1993 May 21;73(1):99–105. doi: 10.1016/0165-3806(93)90051-b. [DOI] [PubMed] [Google Scholar]
  8. Johnston M. V. Neurotransmitters and vulnerability of the developing brain. Brain Dev. 1995 Sep-Oct;17(5):301–306. doi: 10.1016/0387-7604(95)00079-q. [DOI] [PubMed] [Google Scholar]
  9. Lipton P., Whittingham T. S. Reduced ATP concentration as a basis for synaptic transmission failure during hypoxia in the in vitro guinea-pig hippocampus. J Physiol. 1982 Apr;325:51–65. doi: 10.1113/jphysiol.1982.sp014135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Luhmann H. J., Heinemann U. Hypoxia-induced functional alterations in adult rat neocortex. J Neurophysiol. 1992 Apr;67(4):798–811. doi: 10.1152/jn.1992.67.4.798. [DOI] [PubMed] [Google Scholar]
  11. Lutz P. L. Mechanisms for anoxic survival in the vertebrate brain. Annu Rev Physiol. 1992;54:601–618. doi: 10.1146/annurev.ph.54.030192.003125. [DOI] [PubMed] [Google Scholar]
  12. Mironov S. L., Richter D. W. L-type Ca2+ channels in inspiratory neurones of mice and their modulation by hypoxia. J Physiol. 1998 Oct 1;512(Pt 1):75–87. doi: 10.1111/j.1469-7793.1998.075bf.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Norwood W. I., Ingwall J. S., Norwood C. R., Fossel E. T. Developmental changes of creatine kinase metabolism in rat brain. Am J Physiol. 1983 Mar;244(3):C205–C210. doi: 10.1152/ajpcell.1983.244.3.C205. [DOI] [PubMed] [Google Scholar]
  14. Piérard C., Champagnat J., Denavit-Saubie M., Gillet B., Beloeil J. C., Guezennec C. Y., Barrère B., Pérès M. Brain stem energy metabolism response to acute hypoxia in anaesthetized rats: a 31P NMR study. Neuroreport. 1995 Dec 29;7(1):281–285. [PubMed] [Google Scholar]
  15. Ramirez J. M., Quellmalz U. J., Richter D. W. Postnatal changes in the mammalian respiratory network as revealed by the transverse brainstem slice of mice. J Physiol. 1996 Mar 15;491(Pt 3):799–812. doi: 10.1113/jphysiol.1996.sp021258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Richter D. W., Bischoff A., Anders K., Bellingham M., Windhorst U. Response of the medullary respiratory network of the cat to hypoxia. J Physiol. 1991 Nov;443:231–256. doi: 10.1113/jphysiol.1991.sp018832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Smith J. C., Ellenberger H. H., Ballanyi K., Richter D. W., Feldman J. L. Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science. 1991 Nov 1;254(5032):726–729. doi: 10.1126/science.1683005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tsuji M., Allred E., Jensen F., Holtzman D. Phosphocreatine and ATP regulation in the hypoxic developing rat brain. Brain Res Dev Brain Res. 1995 Apr 18;85(2):192–200. doi: 10.1016/0165-3806(94)00213-j. [DOI] [PubMed] [Google Scholar]
  19. Vannucci R. C. Experimental biology of cerebral hypoxia-ischemia: relation to perinatal brain damage. Pediatr Res. 1990 Apr;27(4 Pt 1):317–326. doi: 10.1203/00006450-199004000-00001. [DOI] [PubMed] [Google Scholar]
  20. Whittingham T. S., Lipton P. Cerebral synaptic transmission during anoxia is protected by creatine. J Neurochem. 1981 Dec;37(6):1618–1621. doi: 10.1111/j.1471-4159.1981.tb06337.x. [DOI] [PubMed] [Google Scholar]
  21. Wilken B., Ramirez J. M., Probst I., Richter D. W., Hanefeld F. Creatine protects the central respiratory network of mammals under anoxic conditions. Pediatr Res. 1998 Jan;43(1):8–14. doi: 10.1203/00006450-199801000-00002. [DOI] [PubMed] [Google Scholar]
  22. Yager J. Y., Kala G., Hertz L., Juurlink B. H. Correlation between content of high-energy phosphates and hypoxic-ischemic damage in immature and mature astrocytes. Brain Res Dev Brain Res. 1994 Oct 14;82(1-2):62–68. doi: 10.1016/0165-3806(94)90148-1. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood. Fetal and Neonatal Edition are provided here courtesy of BMJ Publishing Group

RESOURCES