Skip to main content
Archives of Disease in Childhood. Fetal and Neonatal Edition logoLink to Archives of Disease in Childhood. Fetal and Neonatal Edition
. 2000 Sep;83(2):F101–F103. doi: 10.1136/fn.83.2.F101

Cardiovascular effects of an intravenous bolus of morphine in the ventilated preterm infant

N Rutter, N Evans
PMCID: PMC1721131  PMID: 10952701

Abstract

AIM—To examine the cardiovascular effects of an intravenous bolus of morphine, 100 µg/kg, in 17 ventilated preterm infants.
METHODS—Heart rate and blood pressure were monitored. Right ventricular output, superior vena caval flow, and the width of the ductus arteriosus were measured by Doppler echocardiography 10 and 60minutes after the morphine injection, and the values compared with baseline values by the paired t test.
RESULTS—There was a small but significant fall in heart rate (2.1% at 10 minutes, 4.3% at 60 minutes) consistent with a sedative effect. There was no effect on systolic, diastolic, or mean blood pressure. There was no significant effect on systemic blood flow as measured by either right ventricular output or superior vena caval flow. Ductal width was significantly reduced by a mean of 16% at 60minutes, suggesting that normal duct closure was not inhibited.
CONCLUSION—No cardiovascular effects of an intravenous bolus of morphine could be detected.



Full Text

The Full Text of this article is available as a PDF (98.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker D. P., Simpson J., Pawula M., Barrett D. A., Shaw P. N., Rutter N. Randomised, double blind trial of two loading dose regimens of diamorphine in ventilated newborn infants. Arch Dis Child Fetal Neonatal Ed. 1995 Jul;73(1):F22–F26. doi: 10.1136/fn.73.1.f22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Drayton M. R., Skidmore R. Vasoactivity of the major intracranial arteries in newborn infants. Arch Dis Child. 1987 Mar;62(3):236–240. doi: 10.1136/adc.62.3.236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Elias-Jones A. C., Barrett D. A., Rutter N., Shaw P. N., Davis S. S. Diamorphine infusion in the preterm neonate. Arch Dis Child. 1991 Oct;66(10 Spec No):1155–1157. doi: 10.1136/adc.66.10_spec_no.1155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Evans N., Iyer P. Assessment of ductus arteriosus shunt in preterm infants supported by mechanical ventilation: effect of interatrial shunting. J Pediatr. 1994 Nov;125(5 Pt 1):778–785. doi: 10.1016/s0022-3476(94)70078-8. [DOI] [PubMed] [Google Scholar]
  5. Evans N., Iyer P. Longitudinal changes in the diameter of the ductus arteriosus in ventilated preterm infants: correlation with respiratory outcomes. Arch Dis Child Fetal Neonatal Ed. 1995 May;72(3):F156–F161. doi: 10.1136/fn.72.3.f156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Evans N., Kluckow M. Early determinants of right and left ventricular output in ventilated preterm infants. Arch Dis Child Fetal Neonatal Ed. 1996 Mar;74(2):F88–F94. doi: 10.1136/fn.74.2.f88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kluckow M., Evans N. Relationship between blood pressure and cardiac output in preterm infants requiring mechanical ventilation. J Pediatr. 1996 Oct;129(4):506–512. doi: 10.1016/s0022-3476(96)70114-2. [DOI] [PubMed] [Google Scholar]
  8. Kluckow M., Evans N. Superior vena cava flow in newborn infants: a novel marker of systemic blood flow. Arch Dis Child Fetal Neonatal Ed. 2000 May;82(3):F182–F187. doi: 10.1136/fn.82.3.F182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lowenstein E., Hallowell P., Levine F. H., Daggett W. M., Austen W. G., Laver M. B. Cardiovascular response to large doses of intravenous morphine in man. N Engl J Med. 1969 Dec 18;281(25):1389–1393. doi: 10.1056/NEJM196912182812503. [DOI] [PubMed] [Google Scholar]
  10. Quinn M. W., Wild J., Dean H. G., Hartley R., Rushforth J. A., Puntis J. W., Levene M. I. Randomised double-blind controlled trial of effect of morphine on catecholamine concentrations in ventilated pre-term babies. Lancet. 1993 Aug 7;342(8867):324–327. doi: 10.1016/0140-6736(93)91472-x. [DOI] [PubMed] [Google Scholar]
  11. Rubin P. C. Opioid peptides in blood pressure regulation in man. Clin Sci (Lond) 1984 Jun;66(6):625–630. doi: 10.1042/cs0660625. [DOI] [PubMed] [Google Scholar]
  12. Sabatino G., Quartulli L., Di Fabio S., Ramenghi L. A. Hemodynamic effects of intravenous morphine infusion in ventilated preterm babies. Early Hum Dev. 1997 Feb 20;47(3):263–270. doi: 10.1016/s0378-3782(96)01781-1. [DOI] [PubMed] [Google Scholar]
  13. Sholler G. F., Celermajer J. M., Whight C. M., Bauman A. E. Echo Doppler assessment of cardiac output and its relation to growth in normal infants. Am J Cardiol. 1987 Nov 1;60(13):1112–1116. doi: 10.1016/0002-9149(87)90363-8. [DOI] [PubMed] [Google Scholar]
  14. Thomas M., Malmcrona R., Fillmore S., Shillingford J. Haemodynamic effects of morphine in patients with acute myocardial infarction. Br Heart J. 1965 Nov;27(6):863–875. doi: 10.1136/hrt.27.6.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wood C. M., Rushforth J. A., Hartley R., Dean H., Wild J., Levene M. I. Randomised double blind trial of morphine versus diamorphine for sedation of preterm neonates. Arch Dis Child Fetal Neonatal Ed. 1998 Jul;79(1):F34–F39. doi: 10.1136/fn.79.1.f34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Zelis R., Mansour E. J., Capone R. J., Mason D. T. The cardiovascular effects of morphine. The peripheral capacitance and resistance vessels in human subjects. J Clin Invest. 1974 Dec;54(6):1247–1258. doi: 10.1172/JCI107869. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood. Fetal and Neonatal Edition are provided here courtesy of BMJ Publishing Group

RESOURCES