Abstract
AIM—To study the relation between erythrocyte Na+,K+-ATPase subunit isoform composition, Na+,K+-ATPase activity, and cation pump function in preterm and term neonates. DESIGN—Erythrocyte Na+,K+-ATPase subunit isoform abundance, Na+,K+-ATPase activity, and cation pump function were studied in blood samples obtained from 56 preterm neonates of 28-32 weeks gestation (group 1), 58 preterm neonates of 33-36 weeks gestation (group 2), and 122 term neonates (group 3) during the first two postnatal days. RESULTS—α1 isoform abundance was higher and β2 isoform abundance was lower in group 1 than in group 3 (p = 0.0002). α2 and β1 isoform abundance did not change with maturation and there was no evidence for the presence of the α3 isoform. Gestational age was inversely related to Na+,K+-ATPase activity (p = 0.0001) and directly related to intracellular Na+ concentration (p = 0.0025). CONCLUSIONS—Expression of the α1 and β2 Na+,K+-ATPase subunit isoforms is developmentally regulated. The increased abundance of α1 isoforms of immature neonates translates to increased ATPase activity. The lower intracellular Na+ concentration of immature neonates suggests that their erythrocyte Na+,K+-ATPase cation pump function may also be increased.
Full Text
The Full Text of this article is available as a PDF (165.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bistritzer T., Berkovitch M., Rappoport M. J., Evans S., Arieli S., Goldberg M., Tavori I., Aladjem M. Sodium potassium adenosine triphosphatase activity in preterm and term infants and its possible role in sodium homeostasis during maturation. Arch Dis Child Fetal Neonatal Ed. 1999 Nov;81(3):F184–F187. doi: 10.1136/fn.81.3.f184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Chow D. C., Forte J. G. Functional significance of the beta-subunit for heterodimeric P-type ATPases. J Exp Biol. 1995 Jan;198(Pt 1):1–17. doi: 10.1242/jeb.198.1.1. [DOI] [PubMed] [Google Scholar]
- Ebara H., Suzuki S., Nagashima K., Shimano S., Kuroume T. Digoxin-like immunoreactive substances in urine and serum from preterm and term infants: relationship to renal excretion of sodium. J Pediatr. 1986 May;108(5 Pt 1):760–762. doi: 10.1016/s0022-3476(86)81061-7. [DOI] [PubMed] [Google Scholar]
- Hill P. A., Lan H. Y., Nikolic-Paterson D. J., Atkins R. C. ICAM-1 directs migration and localization of interstitial leukocytes in experimental glomerulonephritis. Kidney Int. 1994 Jan;45(1):32–42. doi: 10.1038/ki.1994.4. [DOI] [PubMed] [Google Scholar]
- Hosoi R., Matsuda T., Asano S., Nakamura H., Hashimoto H., Takuma K., Baba A. Isoform-specific up-regulation by ouabain of Na+,K+-ATPase in cultured rat astrocytes. J Neurochem. 1997 Nov;69(5):2189–2196. doi: 10.1046/j.1471-4159.1997.69052189.x. [DOI] [PubMed] [Google Scholar]
- Lorenz J. M., Kleinman L. I., Markarian K. Potassium metabolism in extremely low birth weight infants in the first week of life. J Pediatr. 1997 Jul;131(1 Pt 1):81–86. doi: 10.1016/s0022-3476(97)70128-8. [DOI] [PubMed] [Google Scholar]
- Matsuo Y., Hasegawa K., Doi Y., Kinugasa A., Uchiyama M., Sawada T. Erythrocyte sodium-potassium transport in hyperkalaemic and normokalaemic infants. Eur J Pediatr. 1995 Jul;154(7):571–576. doi: 10.1007/BF02074837. [DOI] [PubMed] [Google Scholar]
- Matsuo Y., Inoue F., Yoshioka H., Kinugasa A., Uchiyama M., Sawada T. Changes of erythrocyte ouabain maximum binding after birth in neonates--in relation to erythrocyte sodium and potassium concentrations. Early Hum Dev. 1995 Aug 30;43(1):59–69. doi: 10.1016/0378-3782(95)01665-p. [DOI] [PubMed] [Google Scholar]
- Rose A. M., Valdes R., Jr Understanding the sodium pump and its relevance to disease. Clin Chem. 1994 Sep;40(9):1674–1685. [PubMed] [Google Scholar]
- Rosén K. G., Sigström L. The influence of age on Na-K-ATP-ase activity in erythrocytes in fetal and newborn guinea pigs. J Perinat Med. 1978;6(3):154–159. doi: 10.1515/jpme.1978.6.3.154. [DOI] [PubMed] [Google Scholar]
- Sato K., Kondo T., Iwao H., Honda S., Ueda K. Sodium and potassium in red blood cells of premature infants during the first few days: risk of hyperkalaemia. Acta Paediatr Scand. 1991 Oct;80(10):899–904. doi: 10.1111/j.1651-2227.1991.tb11750.x. [DOI] [PubMed] [Google Scholar]
- Shamraj O. I., Lingrel J. B. A putative fourth Na+,K(+)-ATPase alpha-subunit gene is expressed in testis. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12952–12956. doi: 10.1073/pnas.91.26.12952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sigström L., Waldenström J., Karlberg P. Characteristics of active sodium and potassium transport in erythrocytes of healthy infants and children. Acta Paediatr Scand. 1981;70(3):347–352. doi: 10.1111/j.1651-2227.1981.tb16562.x. [DOI] [PubMed] [Google Scholar]
- Stefano J. L., Norman M. E., Morales M. C., Goplerud J. M., Mishra O. P., Delivoria-Papadopoulos M. Decreased erythrocyte Na+,K(+)-ATPase activity associated with cellular potassium loss in extremely low birth weight infants with nonoliguric hyperkalemia. J Pediatr. 1993 Feb;122(2):276–284. doi: 10.1016/s0022-3476(06)80133-2. [DOI] [PubMed] [Google Scholar]
- Sweadner K. J. Isozymes of the Na+/K+-ATPase. Biochim Biophys Acta. 1989 May 9;988(2):185–220. doi: 10.1016/0304-4157(89)90019-1. [DOI] [PubMed] [Google Scholar]
- Vásárhelyi B., Szabó T., Vér A., Tulassay T. Measurement of Na+/K+-ATPase activity with an automated analyzer. Clin Chem. 1997 Oct;43(10):1986–1987. [PubMed] [Google Scholar]
- Vásárhelyi B., Vér A., Nobilis A., Szabó T., Tulassay T. Functional and structural properties of Na+/K(+)-ATPase enzyme in neonatal erythrocytes. Eur J Clin Invest. 1998 Jul;28(7):543–545. doi: 10.1046/j.1365-2362.1998.00337.x. [DOI] [PubMed] [Google Scholar]