Abstract
AIMS—To define, in a prospective study, the risk of hypoglycaemia—defined as blood glucose concentration < 1.8 mmol/l—in term infants exposed in utero to valproate and to describe the withdrawal symptoms. METHODS—Twenty epileptic women were treated with valproate only during pregnancy and two were treated with valproate and carbamazepine. In the first trimester, the daily median dose of valproate was 1.0 g (range 0.3-4.2) and in the third trimester 1.2 g (range 0.3-4.8). RESULTS—Thirteen of the 22 infants became hypoglycaemic. One infant had eight episodes of hypoglycaemia, one had three episodes, two had two episodes, and nine had one episode each. The lowest blood glucose concentration was 1.0 mmol/l. All episodes were asymptomatic. The maternal mean plasma concentration of total valproate during the third trimester correlated negatively with blood glucose concentration one hour after delivery (p < 0.0003) and with the development of hypoglycaemia (p < 0.0001). There was no evidence for hyperinsulinaemia as the cause of hypoglycaemia. Ten infants developed withdrawal symptoms, which correlated positively with the mean dose of valproate in the third trimester and the concentration of the free fraction of valproate in maternal plasma at delivery (p < 0.02). CONCLUSIONS—Infants exposed to valproate in utero had a significantly elevated risk of hypoglycaemia, and withdrawal symptoms were often observed.
Full Text
The Full Text of this article is available as a PDF (139.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen L., Dinesen B., Jørgensen P. N., Poulsen F., Røder M. E. Enzyme immunoassay for intact human insulin in serum or plasma. Clin Chem. 1993 Apr;39(4):578–582. [PubMed] [Google Scholar]
- Aynsley-Green A., Polak J. M., Bloom S. R., Gough M. H., Keeling J., Ashcroft S. J., Turner R. C., Baum J. D. Nesidioblastosis of the pancreas: definition of the syndrome and the management of the severe neonatal hyperinsulinaemic hypoglycaemia. Arch Dis Child. 1981 Jul;56(7):496–508. doi: 10.1136/adc.56.7.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bavoux F., Fournier-Perhilou A. I., Wood C., Francoual C., Boccara J. F. Neonatal fibrinogen depletion caused by sodium valproate. Ann Pharmacother. 1994 Nov;28(11):1307–1307. doi: 10.1177/106002809402801123. [DOI] [PubMed] [Google Scholar]
- Bier D. M., Leake R. D., Haymond M. W., Arnold K. J., Gruenke L. D., Sperling M. A., Kipnis D. M. Measurement of "true" glucose production rates in infancy and childhood with 6,6-dideuteroglucose. Diabetes. 1977 Nov;26(11):1016–1023. doi: 10.2337/diab.26.11.1016. [DOI] [PubMed] [Google Scholar]
- Bracero L. A., Cassidy S., Byrne D. W. Effect of gender on perinatal outcome in pregnancies complicated by diabetes. Gynecol Obstet Invest. 1996;41(1):10–14. doi: 10.1159/000292026. [DOI] [PubMed] [Google Scholar]
- Carter B. S. Macrosomic infants of nondiabetic mothers. J Pediatr. 1996 Mar;128(3):439–440. doi: 10.1016/s0022-3476(96)70307-4. [DOI] [PubMed] [Google Scholar]
- Cornblath M., Schwartz R., Aynsley-Green A., Lloyd J. K. Hypoglycemia in infancy: the need for a rational definition. A Ciba Foundation discussion meeting. Pediatrics. 1990 May;85(5):834–837. [PubMed] [Google Scholar]
- Cowett R. M., Oh W., Schwartz R. Persistent glucose production during glucose infusion in the neonate. J Clin Invest. 1983 Mar;71(3):467–475. doi: 10.1172/JCI110791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DANDLIKER W. B., FEIGEN G. A. Quantification of the antigen-antibody reaction by the polarization of fluorescence. Biochem Biophys Res Commun. 1961 Jul 26;5:299–304. doi: 10.1016/0006-291x(61)90167-x. [DOI] [PubMed] [Google Scholar]
- DiLiberti J. H., Farndon P. A., Dennis N. R., Curry C. J. The fetal valproate syndrome. Am J Med Genet. 1984 Nov;19(3):473–481. doi: 10.1002/ajmg.1320190308. [DOI] [PubMed] [Google Scholar]
- Epstein M. F., Nicholls E., Stubblefield P. G. Neonatal hypoglycemia after beta-sympathomimetic tocolytic therapy. J Pediatr. 1979 Mar;94(3):449–453. doi: 10.1016/s0022-3476(79)80600-9. [DOI] [PubMed] [Google Scholar]
- Fluge G. Neurological findings at follow-up in neonatal hypoglycaemia. Acta Paediatr Scand. 1975 Jul;64(4):629–634. doi: 10.1111/j.1651-2227.1975.tb03894.x. [DOI] [PubMed] [Google Scholar]
- Hauser E., Seidl R., Freilinger M., Male C., Herkner K. Hematologic manifestations and impaired liver synthetic function during valproate monotherapy. Brain Dev. 1996 Mar-Apr;18(2):105–109. doi: 10.1016/0387-7604(95)00139-5. [DOI] [PubMed] [Google Scholar]
- Hawdon J. M., Aynsley-Green A., Alberti K. G., Ward Platt M. P. The role of pancreatic insulin secretion in neonatal glucoregulation. I. Healthy term and preterm infants. Arch Dis Child. 1993 Mar;68(3 Spec No):274–279. doi: 10.1136/adc.68.3_spec_no.274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heding L. G., Persson B., Stangenberg M. B-cell function in newborn infants of diabetic mothers. Diabetologia. 1980 Nov;19(5):427–432. doi: 10.1007/BF00281821. [DOI] [PubMed] [Google Scholar]
- Heding L. G. Radioimmunological determination of human C-peptide in serum. Diabetologia. 1975 Dec;11(6):541–548. doi: 10.1007/BF01222104. [DOI] [PubMed] [Google Scholar]
- Iinuma K., Hayasaka K., Narisawa K., Tada K., Hori K. Hyperamino-acidaemia and hyperammonaemia in epileptic children treated with valproic acid. Eur J Pediatr. 1988 Dec;148(3):267–269. doi: 10.1007/BF00441418. [DOI] [PubMed] [Google Scholar]
- Jäger-Roman E., Deichl A., Jakob S., Hartmann A. M., Koch S., Rating D., Steldinger R., Nau H., Helge H. Fetal growth, major malformations, and minor anomalies in infants born to women receiving valproic acid. J Pediatr. 1986 Jun;108(6):997–1004. doi: 10.1016/s0022-3476(86)80949-0. [DOI] [PubMed] [Google Scholar]
- Kjems L. L., Røder M. E., Dinesen B., Hartling S. G., Jørgensen P. N., Binder C. Highly sensitive enzyme immunoassay of proinsulin immunoreactivity with use of two monoclonal antibodies. Clin Chem. 1993 Oct;39(10):2146–2150. [PubMed] [Google Scholar]
- Koch S., Jäger-Roman E., Lösche G., Nau H., Rating D., Helge H. Antiepileptic drug treatment in pregnancy: drug side effects in the neonate and neurological outcome. Acta Paediatr. 1996 Jun;85(6):739–746. doi: 10.1111/j.1651-2227.1996.tb14137.x. [DOI] [PubMed] [Google Scholar]
- Koh T. H., Aynsley-Green A., Tarbit M., Eyre J. A. Neural dysfunction during hypoglycaemia. Arch Dis Child. 1988 Nov;63(11):1353–1358. doi: 10.1136/adc.63.11.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koivisto M., Blanco-Sequeiros M., Krause U. Neonatal symptomatic and asymptomatic hypoglycaemia: a follow-up study of 151 children. Dev Med Child Neurol. 1972 Oct;14(5):603–614. doi: 10.1111/j.1469-8749.1972.tb02642.x. [DOI] [PubMed] [Google Scholar]
- Lucas A., Morley R., Cole T. J. Adverse neurodevelopmental outcome of moderate neonatal hypoglycaemia. BMJ. 1988 Nov 19;297(6659):1304–1308. doi: 10.1136/bmj.297.6659.1304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mortensen P. B., Gregersen N., Kølvraa S., Christensen E. The occurrence of C6--C10-dicarboxylic acids in urine from patients and rats treated with dipropylacetate. Biochem Med. 1980 Oct;24(2):153–161. doi: 10.1016/0006-2944(80)90006-x. [DOI] [PubMed] [Google Scholar]
- Nobukuni Y., Yokoo T., Ohtani Y., Endo F., Aoki S., Yoshinaga M., Matsumoto T., Yoshimoto M., Tsuji Y., Matsuda I. Neonatal onset of medium-chain acyl-CoA dehydrogenase deficiency in two siblings. Brain Dev. 1988;10(2):129–134. doi: 10.1016/s0387-7604(88)80084-6. [DOI] [PubMed] [Google Scholar]
- Pickles C. J., Symonds E. M., Broughton Pipkin F. The fetal outcome in a randomized double-blind controlled trial of labetalol versus placebo in pregnancy-induced hypertension. Br J Obstet Gynaecol. 1989 Jan;96(1):38–43. doi: 10.1111/j.1471-0528.1989.tb01574.x. [DOI] [PubMed] [Google Scholar]
- Pryds O., Christensen N. J., Friis-Hansen B. Increased cerebral blood flow and plasma epinephrine in hypoglycemic, preterm neonates. Pediatrics. 1990 Feb;85(2):172–176. [PubMed] [Google Scholar]
- Rindfrey H., Helger R., Lang H. Kinetic determination of glucose concentrations with glucose dehydrogenase. J Clin Chem Clin Biochem. 1977 Apr;15(4):217–220. doi: 10.1515/cclm.1977.15.1-12.217. [DOI] [PubMed] [Google Scholar]
- Rogiers V., Vandenberghe Y., Vercruysse A. Inhibition of gluconeogenesis by sodium valproate and its metabolites in isolated rat hepatocytes. Xenobiotica. 1985 Aug-Sep;15(8-9):759–765. doi: 10.3109/00498258509047438. [DOI] [PubMed] [Google Scholar]
- Stiete H., Stiete S., Jährig D., Briese V., Willich S. N. Risikogruppen Neugeborener diabetischer Mütter in Abhängigkeit von ihrem somatischen Outcome und der mütterlichen diabetischen Stoffwechsellage in der Schwangerschaft. Z Geburtshilfe Neonatol. 1995 Jul-Aug;199(4):156–162. [PubMed] [Google Scholar]
- Thisted E., Ebbesen F. Malformations, withdrawal manifestations, and hypoglycaemia after exposure to valproate in utero. Arch Dis Child. 1993 Sep;69(3 Spec No):288–291. doi: 10.1136/adc.69.3_spec_no.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thurston J. H., Carroll J. E., Dodson W. E., Hauhart R. E., Tasch V. Chronic valproate administration reduces fasting ketonemia in children. Neurology. 1983 Oct;33(10):1348–1350. doi: 10.1212/wnl.33.10.1348. [DOI] [PubMed] [Google Scholar]
- Toksoy H. B., Tanzer F. N., Atalay A. Serum carnitine, beta-hydroxybutyrate and ammonia levels during valproic acid therapy. Turk J Pediatr. 1995 Jan-Mar;37(1):25–29. [PubMed] [Google Scholar]
- Tyni T., Palotie A., Viinikka L., Valanne L., Salo M. K., von Döbeln U., Jackson S., Wanders R., Venizelos N., Pihko H. Long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency with the G1528C mutation: clinical presentation of thirteen patients. J Pediatr. 1997 Jan;130(1):67–76. doi: 10.1016/s0022-3476(97)70312-3. [DOI] [PubMed] [Google Scholar]
- Van Wouwe J. P. Carnitine deficiency during valproic acid treatment. Int J Vitam Nutr Res. 1995;65(3):211–214. [PubMed] [Google Scholar]