Skip to main content
Archives of Disease in Childhood. Fetal and Neonatal Edition logoLink to Archives of Disease in Childhood. Fetal and Neonatal Edition
. 2001 Jan;84(1):F28–F33. doi: 10.1136/fn.84.1.F28

Renal follow up of premature infants with and without perinatal indomethacin exposure

R Ojala, M Ala-Houhala, S Ahonen, A Harmoinen, V Turjanmaa, S Ikonen, O Tammela
PMCID: PMC1721186  PMID: 11124920

Abstract

AIMS—To evaluate early childhood renal growth, structure, and function in children born at less than 33 weeks gestation and to investigate possible independent effects of perinatal indomethacin exposure.
METHODS—A total of 66 children born at less than 33 weeks gestation, 31 of them with perinatal indomethacin exposure (study group) and 35 without (control group), were examined at 2-4 years of age. Serum cystatin C and protein; plasma creatinine, sodium, and potassium; urine protein, calcium:creatinine ratios, and α1 microglobulin; and glomerular filtration rate (GFR) were determined. Renal sonography examinations were performed.
RESULTS—The mean serum cystatin C concentrations were slightly higher in the control group than in the study group. Mean values of serum protein, and plasma creatinine and sodium did not differ between the groups, neither did median plasma potassium concentrations and urine protein:creatinine and calcium:creatinine ratios. None had tubular proteinuria. Abnormal GFR (<89 ml/min/1.73 m2) was found in one case in each group and renal structural abnormalities in five in each group. In logistic regression analysis the duration of umbilical artery catheter (UAC) use and furosemide treatment emerged as the significant independent risk factors for renal structural abnormalities. Furosemide treatment and assisted ventilation remained the risk factors associated with renal abnormalities in general—that is, functional and/or structural abnormal findings.
CONCLUSION—Perinatal indomethacin does not seem to affect long term renal growth, structure, or function in children born at less than 33 weeks gestation. Duration of UAC use, furosemide treatment, and assisted ventilation may be correlated with later renal structural and functional abnormalities.


Full Text

The Full Text of this article is available as a PDF (145.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alon U. S., Scagliotti D., Garola R. E. Nephrocalcinosis and nephrolithiasis in infants with congestive heart failure treated with furosemide. J Pediatr. 1994 Jul;125(1):149–151. doi: 10.1016/s0022-3476(94)70143-1. [DOI] [PubMed] [Google Scholar]
  2. Bartels H., Böhmer M., Heierli C. Serum Kreatinibestimmung ohne Enteiweissen. Clin Chim Acta. 1972 Mar;37:193–197. doi: 10.1016/0009-8981(72)90432-9. [DOI] [PubMed] [Google Scholar]
  3. Dinkel E., Ertel M., Dittrich M., Peters H., Berres M., Schulte-Wissermann H. Kidney size in childhood. Sonographical growth charts for kidney length and volume. Pediatr Radiol. 1985;15(1):38–43. doi: 10.1007/BF02387851. [DOI] [PubMed] [Google Scholar]
  4. Downing G. J., Egelhoff J. C., Daily D. K., Thomas M. K., Alon U. Kidney function in very low birth weight infants with furosemide-related renal calcifications at ages 1 to 2 years. J Pediatr. 1992 Apr;120(4 Pt 1):599–604. doi: 10.1016/s0022-3476(05)82490-4. [DOI] [PubMed] [Google Scholar]
  5. Ezzedeen F., Adelman R. D., Ahlfors C. E. Renal calcification in preterm infants: pathophysiology and long-term sequelae. J Pediatr. 1988 Sep;113(3):532–539. doi: 10.1016/s0022-3476(88)80647-4. [DOI] [PubMed] [Google Scholar]
  6. Garnett E. S., Parsons V., Veall N. Measurement of glomerular filtration-rate in man using a 51Cr-edetic-acid complex. Lancet. 1967 Apr 15;1(7494):818–819. doi: 10.1016/s0140-6736(67)92781-x. [DOI] [PubMed] [Google Scholar]
  7. Glickstein J. S., Rutkowski M., Schacht R., Friedman D. Renal blood flow velocity in neonates with and without umbilical artery catheters. J Clin Ultrasound. 1994 Nov-Dec;22(9):543–550. doi: 10.1002/jcu.1870220905. [DOI] [PubMed] [Google Scholar]
  8. Hufnagle K. G., Khan S. N., Penn D., Cacciarelli A., Williams P. Renal calcifications: a complication of long-term furosemide therapy in preterm infants. Pediatrics. 1982 Sep;70(3):360–363. [PubMed] [Google Scholar]
  9. Jacinto J. S., Modanlou H. D., Crade M., Strauss A. A., Bosu S. K. Renal calcification incidence in very low birth weight infants. Pediatrics. 1988 Jan;81(1):31–35. [PubMed] [Google Scholar]
  10. Jones C. A., King S., Shaw N. J., Judd B. A. Renal calcification in preterm infants: follow up at 4-5 years. Arch Dis Child Fetal Neonatal Ed. 1997 May;76(3):F185–F189. doi: 10.1136/fn.76.3.f185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Karlowicz M. G., Adelman R. D. Renal calcification in the first year of life. Pediatr Clin North Am. 1995 Dec;42(6):1397–1413. doi: 10.1016/s0031-3955(16)40090-8. [DOI] [PubMed] [Google Scholar]
  12. Lin G. J., Cher T. W. Renal vascular resistance in normal children--a color Doppler study. Pediatr Nephrol. 1997 Apr;11(2):182–185. doi: 10.1007/s004670050255. [DOI] [PubMed] [Google Scholar]
  13. Ojala R., Ikonen S., Tammela O. Perinatal indomethacin treatment and neonatal complications in preterm infants. Eur J Pediatr. 2000 Mar;159(3):153–155. doi: 10.1007/s004310050040. [DOI] [PubMed] [Google Scholar]
  14. Payne R. M., Martin T. C., Bower R. J., Canter C. E. Management and follow-up of arterial thrombosis in the neonatal period. J Pediatr. 1989 May;114(5):853–858. doi: 10.1016/s0022-3476(89)80152-0. [DOI] [PubMed] [Google Scholar]
  15. Polinsky M. S., Kaiser B. A., Baluarte H. J. Urolithiasis in childhood. Pediatr Clin North Am. 1987 Jun;34(3):683–710. doi: 10.1016/s0031-3955(16)36262-9. [DOI] [PubMed] [Google Scholar]
  16. Saarela T., Vaarala A., Lanning P., Koivisto M. Incidence, ultrasonic patterns and resolution of nephrocalcinosis in very low birthweight infants. Acta Paediatr. 1999 Jun;88(6):655–660. doi: 10.1080/08035259950169332. [DOI] [PubMed] [Google Scholar]
  17. Seibert J. J., Northington F. J., Miers J. F., Taylor B. J. Aortic thrombosis after umbilical artery catheterization in neonates: prevalence of complications on long-term follow-up. AJR Am J Roentgenol. 1991 Mar;156(3):567–569. doi: 10.2214/ajr.156.3.1899760. [DOI] [PubMed] [Google Scholar]
  18. Seibert J. J., Taylor B. J., Williamson S. L., Williams B. J., Szabo J. S., Corbitt S. L. Sonographic detection of neonatal umbilical-artery thrombosis: clinical correlation. AJR Am J Roentgenol. 1987 May;148(5):965–968. doi: 10.2214/ajr.148.5.965. [DOI] [PubMed] [Google Scholar]
  19. Seyberth H. W., Rascher W., Hackenthal R., Wille L. Effect of prolonged indomethacin therapy on renal function and selected vasoactive hormones in very-low-birth-weight infants with symptomatic patent ductus arteriosus. J Pediatr. 1983 Dec;103(6):979–984. doi: 10.1016/s0022-3476(83)80736-7. [DOI] [PubMed] [Google Scholar]
  20. Shennan A. T., Dunn M. S., Ohlsson A., Lennox K., Hoskins E. M. Abnormal pulmonary outcomes in premature infants: prediction from oxygen requirement in the neonatal period. Pediatrics. 1988 Oct;82(4):527–532. [PubMed] [Google Scholar]
  21. Sheu J. N., Chen C. H., Lue K. H., Chen J. Y., Tsau Y. K., Chen J. H. Renal calcification in very low birth weight infants. Am J Nephrol. 1993;13(1):6–11. doi: 10.1159/000168582. [DOI] [PubMed] [Google Scholar]
  22. Short A., Cooke R. W. The incidence of renal calcification in preterm infants. Arch Dis Child. 1991 Apr;66(4 Spec No):412–417. doi: 10.1136/adc.66.4_spec_no.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tammela O., Ojala R., Iivainen T., Lautamatti V., Pokela M. L., Janas M., Koivisto M., Ikonen S. Short versus prolonged indomethacin therapy for patent ductus arteriosus in preterm infants. J Pediatr. 1999 May;134(5):552–557. doi: 10.1016/s0022-3476(99)70239-8. [DOI] [PubMed] [Google Scholar]
  24. Walsh M. C., Kliegman R. M. Necrotizing enterocolitis: treatment based on staging criteria. Pediatr Clin North Am. 1986 Feb;33(1):179–201. doi: 10.1016/S0031-3955(16)34975-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Woolfield N., Haslam R., Le Quesne G., Chambers H. M., Hogg R., Jureidini K. Ultrasound diagnosis of nephrocalcinosis in preterm infants. Arch Dis Child. 1988 Jan;63(1):86–88. doi: 10.1136/adc.63.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ylinen E. A., Ala-Houhala M., Harmoinen A. P., Knip M. Cystatin C as a marker for glomerular filtration rate in pediatric patients. Pediatr Nephrol. 1999 Aug;13(6):506–509. doi: 10.1007/s004670050647. [DOI] [PubMed] [Google Scholar]
  27. van den Anker J. N., Hop W. C., Schoemaker R. C., van der Heijden B. J., Neijens H. J., de Groot R. Ceftazidime pharmacokinetics in preterm infants: effect of postnatal age and postnatal exposure to indomethacin. Br J Clin Pharmacol. 1995 Nov;40(5):439–443. [PMC free article] [PubMed] [Google Scholar]
  28. van den Anker J. N., Hop W. C., de Groot R., van der Heijden B. J., Broerse H. M., Lindemans J., Sauer P. J. Effects of prenatal exposure to betamethasone and indomethacin on the glomerular filtration rate in the preterm infant. Pediatr Res. 1994 Nov;36(5):578–581. doi: 10.1203/00006450-199411000-00006. [DOI] [PubMed] [Google Scholar]
  29. vd Heijden A. J., Provoost A. P., Nauta J., Grose W., Oranje W. A., Wolff E. D., Sauer P. J. Renal functional impairment in preterm neonates related to intrauterine indomethacin exposure. Pediatr Res. 1988 Nov;24(5):644–648. doi: 10.1203/00006450-198811000-00021. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood. Fetal and Neonatal Edition are provided here courtesy of BMJ Publishing Group

RESOURCES