Skip to main content
Archives of Disease in Childhood. Fetal and Neonatal Edition logoLink to Archives of Disease in Childhood. Fetal and Neonatal Edition
. 2001 May;84(3):F188–F193. doi: 10.1136/fn.84.3.F188

Blood transfusion increases radical promoting non-transferrin bound iron in preterm infants

K Hirano, T Morinobu, H Kim, M Hiroi, R Ban, S Ogawa, H Ogihara, H Tamai, T Ogihara
PMCID: PMC1721242  PMID: 11320046

Abstract

BACKGROUND—Blood transfusion has been recognised as a risk factor for the development of retinopathy of prematurity (ROP) or chronic lung disease (CLD) in preterm infants, but the precise mechanism involved is not understood.
AIM—To investigate the level of non-transferrin bound "free" iron, which has the potential to promote the generation of reactive oxygen species, and its redox status in the plasma of preterm infants immediately before and after blood transfusion.
METHODS—Twenty one preterm infants with a median gestational age and birth weight of 27 weeks and 1021 g respectively were prospectively enrolled in the study. Sixteen of the 21 infants developed ROP and/or CLD. The infants were transfused with concentrated red blood cells at a median age of 32 days. The plasma concentration of total bleomycin detectable iron (BDI) was measured and also the ferrous iron (Fe2+) activity by bleomycin-iron complex dependent degradation of DNA.
RESULTS—Even before blood transfusion, BDI was detectable in one third of the blood samples, and all but one sample had ferrous iron activity. After transfusion, both BDI and ferrous iron activity were significantly increased, in contrast with the situation in full term infants. Plasma ascorbic acid (AA) concentration was significantly decreased after blood transfusion, whereas the level of its oxidation product, dehydroascorbic acid (DHAA), and the DHAA/AA ratio were significantly increased compared with before the transfusion. The activity of plasma ferroxidase, which converts iron from the ferrous to the ferric state, was appreciably decreased in preterm infants, as expected from their very low plasma caeruloplasmin concentration.
CONCLUSIONS—Plasma non-transferrin bound iron was significantly increased in preterm infants after blood transfusion and existed partly in the ferrous form, because of the low ferroxidase activity and the reduction of ferric iron (Fe3+) by ascorbic acid. This finding was specific to preterm infants and was not observed in full term infants after blood transfusion. Non-transferrin bound "free" iron may catalyse the generation of reactive oxygen species, which may be responsible for the clinical association of blood transfusion with ROP and CLD.


Full Text

The Full Text of this article is available as a PDF (121.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bard H., Widness J. A. The life span of erythrocytes transfused to preterm infants. Pediatr Res. 1997 Jul;42(1):9–11. doi: 10.1203/00006450-199707000-00002. [DOI] [PubMed] [Google Scholar]
  2. Berger H. M., Mumby S., Gutteridge J. M. Ferrous ions detected in iron-overloaded cord blood plasma from preterm and term babies: implications for oxidative stress. Free Radic Res. 1995 Jun;22(6):555–559. doi: 10.3109/10715769509150327. [DOI] [PubMed] [Google Scholar]
  3. Berger T. M., Polidori M. C., Dabbagh A., Evans P. J., Halliwell B., Morrow J. D., Roberts L. J., 2nd, Frei B. Antioxidant activity of vitamin C in iron-overloaded human plasma. J Biol Chem. 1997 Jun 20;272(25):15656–15660. doi: 10.1074/jbc.272.25.15656. [DOI] [PubMed] [Google Scholar]
  4. Cooke R. W., Drury J. A., Yoxall C. W., James C. Blood transfusion and chronic lung disease in preterm infants. Eur J Pediatr. 1997 Jan;156(1):47–50. doi: 10.1007/s004310050551. [DOI] [PubMed] [Google Scholar]
  5. Dorrepaal C. A., Berger H. M., Benders M. J., van Zoeren-Grobben D., Van de Bor M., Van Bel F. Nonprotein-bound iron in postasphyxial reperfusion injury of the newborn. Pediatrics. 1996 Nov;98(5):883–889. [PubMed] [Google Scholar]
  6. Evans P. J., Evans R., Kovar I. Z., Holton A. F., Halliwell B. Bleomycin-detectable iron in the plasma of premature and full-term neonates. FEBS Lett. 1992 Jun 1;303(2-3):210–212. doi: 10.1016/0014-5793(92)80521-h. [DOI] [PubMed] [Google Scholar]
  7. Gopinathan V., Miller N. J., Milner A. D., Rice-Evans C. A. Bilirubin and ascorbate antioxidant activity in neonatal plasma. FEBS Lett. 1994 Aug 1;349(2):197–200. doi: 10.1016/0014-5793(94)00666-0. [DOI] [PubMed] [Google Scholar]
  8. Gutteridge J. M. Ferrous ions detected in cerebrospinal fluid by using bleomycin and DNA damage. Clin Sci (Lond) 1992 Mar;82(3):315–320. doi: 10.1042/cs0820315. [DOI] [PubMed] [Google Scholar]
  9. Gutteridge J. M., Hou Y. Y. Iron complexes and their reactivity in the bleomycin assay for radical-promoting loosely-bound iron. Free Radic Res Commun. 1986;2(3):143–151. doi: 10.3109/10715768609088066. [DOI] [PubMed] [Google Scholar]
  10. Gutteridge J. M. Plasma ascorbate levels and inhibition of the antioxidant activity of caeruloplasmin. Clin Sci (Lond) 1991 Sep;81(3):413–417. doi: 10.1042/cs0810413. [DOI] [PubMed] [Google Scholar]
  11. Gutteridge J. M., Rowley D. A., Halliwell B. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Detection of 'free' iron in biological systems by using bleomycin-dependent degradation of DNA. Biochem J. 1981 Oct 1;199(1):263–265. doi: 10.1042/bj1990263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gutteridge J. M., Stocks J. Caeruloplasmin: physiological and pathological perspectives. Crit Rev Clin Lab Sci. 1981;14(4):257–329. doi: 10.3109/10408368109105866. [DOI] [PubMed] [Google Scholar]
  13. Halliwell B., Gutteridge J. M. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1–85. doi: 10.1016/0076-6879(90)86093-b. [DOI] [PubMed] [Google Scholar]
  14. Halliwell B. Vitamin C: antioxidant or pro-oxidant in vivo? Free Radic Res. 1996 Nov;25(5):439–454. doi: 10.3109/10715769609149066. [DOI] [PubMed] [Google Scholar]
  15. Hesse L., Eberl W., Schlaud M., Poets C. F. Blood transfusion. Iron load and retinopathy of prematurity. Eur J Pediatr. 1997 Jun;156(6):465–470. doi: 10.1007/s004310050641. [DOI] [PubMed] [Google Scholar]
  16. Inder T. E., Clemett R. S., Austin N. C., Graham P., Darlow B. A. High iron status in very low birth weight infants is associated with an increased risk of retinopathy of prematurity. J Pediatr. 1997 Oct;131(4):541–544. doi: 10.1016/s0022-3476(97)70058-1. [DOI] [PubMed] [Google Scholar]
  17. Johnson D. A., Osaki S., Frieden E. A micromethod for the determination of ferroxidase (ceruloplasmin) in human serums. Clin Chem. 1967 Feb;13(2):142–150. [PubMed] [Google Scholar]
  18. Kime R., Gibson A., Yong W., Hider R., Powers H. Chromatographic method for the determination of non-transferrin-bound iron suitable for use on the plasma and bronchoalveolar lavage fluid of preterm babies. Clin Sci (Lond) 1996 Nov;91(5):633–638. doi: 10.1042/cs0910633. [DOI] [PubMed] [Google Scholar]
  19. Makino T., Kiyonaga M., Kina K. A sensitive, direct colorimetric assay of serum iron using the chromogen, nitro-PAPS. Clin Chim Acta. 1988 Jan 15;171(1):19–27. doi: 10.1016/0009-8981(88)90287-2. [DOI] [PubMed] [Google Scholar]
  20. Ogawa Y., Fujimura M., Goto A., Kawano T., Kondo T., Nakae N., Nishida A., Ohno T., Takeuchi Y., Togari H. Epidemiology of neonatal chronic lung disease in Japan. Acta Paediatr Jpn. 1992 Dec;34(6):663–667. doi: 10.1111/j.1442-200x.1992.tb01028.x. [DOI] [PubMed] [Google Scholar]
  21. Ogihara T., Hirano K., Morinobu T., Kim H. S., Hiroi M., Ogihara H., Tamai H. Raised concentrations of aldehyde lipid peroxidation products in premature infants with chronic lung disease. Arch Dis Child Fetal Neonatal Ed. 1999 Jan;80(1):F21–F25. doi: 10.1136/fn.80.1.f21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ogihara T., Kim H. S., Hirano K., Imanishi M., Ogihara H., Tamai H., Okamoto R., Mino M. Oxidation products of uric acid and ascorbic acid in preterm infants with chronic lung disease. Biol Neonate. 1998;73(1):24–33. doi: 10.1159/000013956. [DOI] [PubMed] [Google Scholar]
  23. Ogihara T., Kitagawa M., Miki M., Tamai H., Yasuda H., Okamoto R., Mino M. Susceptibility of neonatal lipoproteins to oxidative stress. Pediatr Res. 1991 Jan;29(1):39–45. doi: 10.1203/00006450-199101000-00008. [DOI] [PubMed] [Google Scholar]
  24. Ogihara T., Okamoto R., Kim H. S., Nagai A., Morinobu T., Moji H., Kamegai H., Hirano K., Ogihara H., Tamai H. New evidence for the involvement of oxygen radicals in triggering neonatal chronic lung disease. Pediatr Res. 1996 Jan;39(1):117–119. doi: 10.1203/00006450-199601000-00017. [DOI] [PubMed] [Google Scholar]
  25. Poli G., Parola M. Oxidative damage and fibrogenesis. Free Radic Biol Med. 1997;22(1-2):287–305. doi: 10.1016/s0891-5849(96)00327-9. [DOI] [PubMed] [Google Scholar]
  26. Ripalda M. J., Rudolph N., Wong S. L. Developmental patterns of antioxidant defense mechanisms in human erythrocytes. Pediatr Res. 1989 Oct;26(4):366–369. doi: 10.1203/00006450-198910000-00016. [DOI] [PubMed] [Google Scholar]
  27. Sacks L. M., Schaffer D. B., Anday E. K., Peckham G. J., Delivoria-Papadopoulos M. Retrolental fibroplasia and blood transfusion in very low-birth-weight infants. Pediatrics. 1981 Dec;68(6):770–774. [PubMed] [Google Scholar]
  28. Saugstad O. D. Oxygen toxicity in the neonatal period. Acta Paediatr Scand. 1990 Oct;79(10):881–892. doi: 10.1111/j.1651-2227.1990.tb11348.x. [DOI] [PubMed] [Google Scholar]
  29. Shaw J. C. Iron absorption by the premature infant. The effect of transfusion and iron supplements on the serum ferritin levels. Acta Paediatr Scand Suppl. 1982;299:83–89. doi: 10.1111/j.1651-2227.1982.tb09630.x. [DOI] [PubMed] [Google Scholar]
  30. Shohat M., Reisner S. H., Krikler R., Nissenkorn I., Yassur Y., Ben-Sira I. Retinopathy of prematurity: incidence and risk factors. Pediatrics. 1983 Aug;72(2):159–163. [PubMed] [Google Scholar]
  31. Silvers K. M., Gibson A. T., Russell J. M., Powers H. J. Antioxidant activity, packed cell transfusions, and outcome in premature infants. Arch Dis Child Fetal Neonatal Ed. 1998 May;78(3):F214–F219. doi: 10.1136/fn.78.3.f214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sullivan J. L. Iron, plasma antioxidants, and the 'oxygen radical disease of prematurity'. Am J Dis Child. 1988 Dec;142(12):1341–1344. doi: 10.1001/archpedi.1988.02150120095048. [DOI] [PubMed] [Google Scholar]
  33. Sullivan J. L. Retinopathy of prematurity. Low iron binding capacity may contribute. BMJ. 1993 Nov 20;307(6915):1353–1354. doi: 10.1136/bmj.307.6915.1353-d. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Suzuki Y. J., Forman H. J., Sevanian A. Oxidants as stimulators of signal transduction. Free Radic Biol Med. 1997;22(1-2):269–285. doi: 10.1016/s0891-5849(96)00275-4. [DOI] [PubMed] [Google Scholar]
  35. Van Bel F., Shadid M., Moison R. M., Dorrepaal C. A., Fontijn J., Monteiro L., Van De Bor M., Berger H. M. Effect of allopurinol on postasphyxial free radical formation, cerebral hemodynamics, and electrical brain activity. Pediatrics. 1998 Feb;101(2):185–193. doi: 10.1542/peds.101.2.185. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood. Fetal and Neonatal Edition are provided here courtesy of BMJ Publishing Group

RESOURCES