Skip to main content
Archives of Disease in Childhood. Fetal and Neonatal Edition logoLink to Archives of Disease in Childhood. Fetal and Neonatal Edition
. 2001 Jul;85(1):F29–F32. doi: 10.1136/fn.85.1.F29

Randomised controlled trial of postnatal sodium supplementation in infants of 25-30 weeks gestational age: effects on cardiopulmonary adaptation

G Hartnoll, P Betremieux, N Modi
PMCID: PMC1721278  PMID: 11420318

Abstract

BACKGROUND—It has previously been shown that, in preterm babies, routine sodium supplementation from 24 hours after birth is associated with increased risk of oxygen dependency and persistent expansion of the extracellular compartment.
OBJECTIVE—To explore whether this is mediated by a delayed fall in pulmonary artery pressure (PAP). Postnatal changes in PAP, estimated as the ratio of time to peak velocity to right ventricular ejection time, corrected for heart rate (TPV:RVET(c)), were compared in preterm infants who received routine sodium supplements that were either early or delayed.
METHODS—Infants were randomised, stratified according to sex and gestation, to receive a sodium intake of 4 mmol/kg/day starting either from 24 hours after birth or when a weight loss of 6% of birth weight was achieved. Echocardiographic assessment was made on the day of delivery (day 0), and on days 1, 2, 7, and 14. Babies with congenital heart disease were excluded.
RESULTS—There was no difference between the two groups in TPV:RVET(c) measured sequentially after birth. On within group testing, when compared with values at birth, the ratio was higher by day 3 in the early supplemented group, suggesting a more rapid fall in PAP compared with the late supplemented group, in whom a significant fall did not occur until day 14.
CONCLUSIONS—The timing of sodium supplementation after preterm birth does not appear to affect the rate of fall in PAP as measured by the TPV:RVET(c) ratio. The previous observation linking routine sodium supplementation from 24 hours after birth with increased risk of continuing oxygen requirement therefore does not appear to be mediated by a delayed fall in PAP. Instead, the increased risk of continuing oxygen requirement is likely to be a direct consequence of persistent expansion of the extracellular compartment and increased pulmonary interstitial fluid, resulting from a sodium intake that exceeded sodium excretory capacity. This adds further weight to the view that clinical management, in this case the timing of routine sodium supplementation, should be individually tailored and delayed until the onset of postnatal extracellular volume contraction, marked clinically by weight loss.


Full Text

The Full Text of this article is available as a PDF (122.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiba T., Yoshikawa M., Otaki S., Kobayashi Y., Nakasato M., Suzuki H., Sato T. Prediction of peak pulmonary artery pressure by continuous-wave Doppler echocardiography in infants and children. Pediatr Cardiol. 1988;9(4):225–229. doi: 10.1007/BF02078413. [DOI] [PubMed] [Google Scholar]
  2. Costarino A. T., Jr, Gruskay J. A., Corcoran L., Polin R. A., Baumgart S. Sodium restriction versus daily maintenance replacement in very low birth weight premature neonates: a randomized, blind therapeutic trial. J Pediatr. 1992 Jan;120(1):99–106. doi: 10.1016/s0022-3476(05)80611-0. [DOI] [PubMed] [Google Scholar]
  3. Evans N. J., Archer L. N. Doppler assessment of pulmonary artery pressure and extrapulmonary shunting in the acute phase of hyaline membrane disease. Arch Dis Child. 1991 Jan;66(1 Spec No):6–11. doi: 10.1136/adc.66.1_spec_no.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Evans N. J., Archer L. N. Doppler assessment of pulmonary artery pressure during recovery from hyaline membrane disease. Arch Dis Child. 1991 Jul;66(7 Spec No):802–804. doi: 10.1136/adc.66.7_spec_no.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Evans N. J., Archer L. N. Postnatal circulatory adaptation in healthy term and preterm neonates. Arch Dis Child. 1990 Jan;65(1 Spec No):24–26. doi: 10.1136/adc.65.1_spec_no.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hartnoll G., Bétrémieux P., Modi N. Randomised controlled trial of postnatal sodium supplementation on body composition in 25 to 30 week gestational age infants. Arch Dis Child Fetal Neonatal Ed. 2000 Jan;82(1):F24–F28. doi: 10.1136/fn.82.1.F24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hartnoll G., Bétrémieux P., Modi N. Randomised controlled trial of postnatal sodium supplementation on oxygen dependency and body weight in 25-30 week gestational age infants. Arch Dis Child Fetal Neonatal Ed. 2000 Jan;82(1):F19–F23. doi: 10.1136/fn.82.1.F19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Holen J., Aaslid R., Landmark K., Simonsen S. Determination of pressure gradient in mitral stenosis with a non-invasive ultrasound Doppler technique. Acta Med Scand. 1976;199(6):455–460. doi: 10.1111/j.0954-6820.1976.tb06763.x. [DOI] [PubMed] [Google Scholar]
  9. Kitabatake A., Inoue M., Asao M., Masuyama T., Tanouchi J., Morita T., Mishima M., Uematsu M., Shimazu T., Hori M. Noninvasive evaluation of pulmonary hypertension by a pulsed Doppler technique. Circulation. 1983 Aug;68(2):302–309. doi: 10.1161/01.cir.68.2.302. [DOI] [PubMed] [Google Scholar]
  10. Kosturakis D., Goldberg S. J., Allen H. D., Loeber C. Doppler echocardiographic prediction of pulmonary arterial hypertension in congenital heart disease. Am J Cardiol. 1984 Apr 1;53(8):1110–1115. doi: 10.1016/0002-9149(84)90646-5. [DOI] [PubMed] [Google Scholar]
  11. Modi N., Bétrémieux P., Midgley J., Hartnoll G. Postnatal weight loss and contraction of the extracellular compartment is triggered by atrial natriuretic peptide. Early Hum Dev. 2000 Sep;59(3):201–208. doi: 10.1016/s0378-3782(00)00097-9. [DOI] [PubMed] [Google Scholar]
  12. Modi N., Hutton J. L. The influence of postnatal respiratory adaptation on sodium handling in preterm neonates. Early Hum Dev. 1990 Jan;21(1):11–20. doi: 10.1016/0378-3782(90)90106-s. [DOI] [PubMed] [Google Scholar]
  13. Musewe N. N., Smallhorn J. F., Benson L. N., Burrows P. E., Freedom R. M. Validation of Doppler-derived pulmonary arterial pressure in patients with ductus arteriosus under different hemodynamic states. Circulation. 1987 Nov;76(5):1081–1091. doi: 10.1161/01.cir.76.5.1081. [DOI] [PubMed] [Google Scholar]
  14. Panidis I. P., Ross J., Mintz G. S. Effect of sampling site on assessment of pulmonary artery blood flow by Doppler echocardiography. Am J Cardiol. 1986 Nov 15;58(11):1145–1147. doi: 10.1016/0002-9149(86)90146-3. [DOI] [PubMed] [Google Scholar]
  15. Requarth J. A., Goldberg S. J., Vasko S. D., Allen H. D. In vitro verification of Doppler prediction of transvalve pressure gradient and orifice area in stenosis. Am J Cardiol. 1984 May 1;53(9):1369–1373. doi: 10.1016/0002-9149(84)90096-1. [DOI] [PubMed] [Google Scholar]
  16. Shaffer S. G., Meade V. M. Sodium balance and extracellular volume regulation in very low birth weight infants. J Pediatr. 1989 Aug;115(2):285–290. doi: 10.1016/s0022-3476(89)80087-3. [DOI] [PubMed] [Google Scholar]
  17. Skinner J. R., Boys R. J., Heads A., Hey E. N., Hunter S. Estimation of pulmonary arterial pressure in the newborn: study of the repeatability of four Doppler echocardiographic techniques. Pediatr Cardiol. 1996 Nov-Dec;17(6):360–369. doi: 10.1007/s002469900080. [DOI] [PubMed] [Google Scholar]
  18. Skinner J. R., Boys R. J., Hunter S., Hey E. N. Pulmonary and systemic arterial pressure in hyaline membrane disease. Arch Dis Child. 1992 Apr;67(4 Spec No):366–373. doi: 10.1136/adc.67.4_spec_no.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Skinner J. R., Stuart A. G., O'Sullivan J., Heads A., Boys R. J., Hunter S. Right heart pressure determination by Doppler in infants with tricuspid regurgitation. Arch Dis Child. 1993 Aug;69(2):216–220. doi: 10.1136/adc.69.2.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Subhedar N. V., Shaw N. J. Intraobserver variation in Doppler ultrasound assessment of pulmonary artery pressure. Arch Dis Child Fetal Neonatal Ed. 1996 Jul;75(1):F59–F61. doi: 10.1136/fn.75.1.f59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Teirstein P. S., Yock P. G., Popp R. L. The accuracy of Doppler ultrasound measurement of pressure gradients across irregular, dual, and tunnellike obstructions to blood flow. Circulation. 1985 Sep;72(3):577–584. doi: 10.1161/01.cir.72.3.577. [DOI] [PubMed] [Google Scholar]
  22. Tramarin R., Torbicki A., Marchandise B., Laaban J. P., Morpurgo M. Doppler echocardiographic evaluation of pulmonary artery pressure in chronic obstructive pulmonary disease. A European multicentre study. Working Group on Noninvasive Evaluation of Pulmonary Artery Pressure. European Office of the World Health Organization, Copenhagen. Eur Heart J. 1991 Feb;12(2):103–111. doi: 10.1093/oxfordjournals.eurheartj.a059855. [DOI] [PubMed] [Google Scholar]
  23. Walther F. J., Benders M. J., Leighton J. O. Early changes in the neonatal circulatory transition. J Pediatr. 1993 Oct;123(4):625–632. doi: 10.1016/s0022-3476(05)80966-7. [DOI] [PubMed] [Google Scholar]
  24. Yock P. G., Popp R. L. Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation. 1984 Oct;70(4):657–662. doi: 10.1161/01.cir.70.4.657. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood. Fetal and Neonatal Edition are provided here courtesy of BMJ Publishing Group

RESOURCES