Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1988 Feb;32(2):170–174. doi: 10.1128/aac.32.2.170

Characterization of resistance phenotype and cephalosporin activity in oxacillin-resistant Staphylococcus aureus.

M Mateos-Mora 1, C C Knapp 1, J A Washington 2nd 1
PMCID: PMC172129  PMID: 3364941

Abstract

Forty isolates of methicillin-resistant Staphylococcus aureus were tested versus oxacillin at 30 and 35 degrees C with and without 2% NaCl supplementation of Mueller-Hinton broth and classified as having resistance that was low (MIC, less than or equal to 16 micrograms/ml) or high (MIC, greater than or equal to 32 micrograms/ml) and temperature or NaCl dependent. Only three isolates had low-grade resistance at both 30 and 35 degrees C; for two isolates the MICs at 35 degrees C were greater than or equal to 4 X the MICs at 30 degrees C. NaCl usually increased the MICs two- to fourfold. Efficiency of plating studies were performed on strains selected for their level of oxacillin resistance and according to temperature-related difference in MICs. Most strains appeared to represent the heterogeneous resistance phenotype. Cefamandole MICs were little affected by temperature but increased with NaCl. With three exceptions, cefamandole MCBs were less than or equal to 4 X MICs. For only six isolates were cefuroxime MICs less than or equal to 16 micrograms/ml. Four strains that were susceptible to both cefuroxime and cefamandole were selected for time-killing curve studies at inocula of 10(7) CFU/ml. At 8 X MIC, cefuroxime failed to reduce the concentration of any strain by greater than or equal to 3 X log10 CFU/ml. Killing of greater than or equal to 3 X log10 CFU/ml was achieved by cefamandole at 4X and 8 X MIC in one strain, at 8 X MIC only in two strains, and by neither 4 X nor 8 X MIC in one strain. Within therapeutically attainable blood levels, cefuroxime is essentially inactive and cefamandole is variably bactericidal against oxacillin-resistant s. aureus.

Full text

PDF
170

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benner E. J., Morthland V. Methicillin-resistant Staphylococcus aureus. Antimicrobial susceptibility. N Engl J Med. 1967 Sep 28;277(13):678–680. doi: 10.1056/NEJM196709282771303. [DOI] [PubMed] [Google Scholar]
  2. Boyce J. M. Reevaluation of the ability of the standardized disk diffusion test to detect methicillin-resistant strains of Staphylococcus aureus. J Clin Microbiol. 1984 Jun;19(6):813–817. doi: 10.1128/jcm.19.6.813-817.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Canawati H. N., Witte J. L., Sapico F. L. Temperature effect on the susceptibility of methicillin-resistant Staphylococcus aureus to four different cephalosporins. Antimicrob Agents Chemother. 1982 Jan;21(1):173–175. doi: 10.1128/aac.21.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chambers H. F., Hackbarth C. J., Drake T. A., Rusnak M. G., Sande M. A. Endocarditis due to methicillin-resistant Staphylococcus aureus in rabbits: expression of resistance to beta-lactam antibiotics in vivo and in vitro. J Infect Dis. 1984 Jun;149(6):894–903. doi: 10.1093/infdis/149.6.894. [DOI] [PubMed] [Google Scholar]
  5. Coudron P. E., Jones D. L., Dalton H. P., Archer G. L. Evaluation of laboratory tests for detection of methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. J Clin Microbiol. 1986 Nov;24(5):764–769. doi: 10.1128/jcm.24.5.764-769.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eng R. H., Corrado M. L., Tillotson J., Gombert M., Cherubin C., Landesman S. Cefamandole for the therapy of serious Staphylococcus aureus infections. J Antimicrob Chemother. 1985 Nov;16(5):663–666. doi: 10.1093/jac/16.5.663. [DOI] [PubMed] [Google Scholar]
  7. Frongillo R. F., Bianchi P., Moretti A., Pasticci M. B., Ripa S., Pauluzzi S. Cross-resistance between methicillin and cephalosporins for staphylococci: a general assumption not true for cefamandole. Antimicrob Agents Chemother. 1984 May;25(5):666–668. doi: 10.1128/aac.25.5.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frongillo R. F., Donati L., Federico G., Martino P., Moroni M., Ortona L., Palumbo M., Pasticci B. M., Pizzigallo E., Privitera G. Clinical comparative study on the activity of cefamandole in the treatment of serious staphylococcal infections caused by methicillin-susceptible and methicillin-resistant strains. Antimicrob Agents Chemother. 1986 May;29(5):789–796. doi: 10.1128/aac.29.5.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hartman B. J., Tomasz A. Expression of methicillin resistance in heterogeneous strains of Staphylococcus aureus. Antimicrob Agents Chemother. 1986 Jan;29(1):85–92. doi: 10.1128/aac.29.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hartman B., Tomasz A. Altered penicillin-binding proteins in methicillin-resistant strains of Staphylococcus aureus. Antimicrob Agents Chemother. 1981 May;19(5):726–735. doi: 10.1128/aac.19.5.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hirschl A., Stanek G., Rotter M. Effectiveness of cefamandole against methicillin-resistant strains of Staphylococcus aureus in vitro and in experimental infections. J Antimicrob Chemother. 1984 May;13(5):429–435. doi: 10.1093/jac/13.5.429. [DOI] [PubMed] [Google Scholar]
  12. Jones R. N., Edson D. C. Special topics in antimicrobial susceptibility testing: test accuracy against methicillin-resistant Staphylococcus aureus, pneumococci, and the sensitivity of beta-lactamase methods. Am J Clin Pathol. 1983 Oct;80(4 Suppl):609–614. [PubMed] [Google Scholar]
  13. Levine D. P., Cushing R. D., Jui J., Brown W. J. Community-acquired methicillin-resistant Staphylococcus aureus endocarditis in the Detroit Medical Center. Ann Intern Med. 1982 Sep;97(3):330–338. doi: 10.7326/0003-4819-97-3-330. [DOI] [PubMed] [Google Scholar]
  14. Locksley R. M., Cohen M. L., Quinn T. C., Tompkins L. S., Coyle M. B., Kirihara J. M., Counts G. W. Multiply antibiotic-resistant Staphylococcus aureus: introduction, transmission, and evolution of nosocomial infection. Ann Intern Med. 1982 Sep;97(3):317–324. doi: 10.7326/0003-4819-97-3-317. [DOI] [PubMed] [Google Scholar]
  15. McDougal L. K., Thornsberry C. New recommendations for disk diffusion antimicrobial susceptibility tests for methicillin-resistant (heteroresistant) staphylococci. J Clin Microbiol. 1984 Apr;19(4):482–488. doi: 10.1128/jcm.19.4.482-488.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Menzies R. E., Cornere B. M., MacCulloch D. Cephalosporin susceptibility of methicillin-resistant, coagulase-negative staphylococci. Antimicrob Agents Chemother. 1987 Jan;31(1):42–45. doi: 10.1128/aac.31.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Peacock J. E., Jr, Moorman D. R., Wenzel R. P., Mandell G. L. Methicillin-resistant Staphylococcus aureus: microbiologic characteristics, antimicrobial susceptibilities, and assessment of virulence of an epidemic strain. J Infect Dis. 1981 Dec;144(6):575–582. doi: 10.1093/infdis/144.6.575. [DOI] [PubMed] [Google Scholar]
  18. Pearson R. D., Steigbigel R. T., Davis H. T., Chapman S. W. Method of reliable determination of minimal lethal antibiotic concentrations. Antimicrob Agents Chemother. 1980 Nov;18(5):699–708. doi: 10.1128/aac.18.5.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Portier H., Kazmierczak A., Lucht F., Tremeaux J. C., Chavanet P., Duez J. M. Cefotaxime in combination with other antibiotics for the treatment of severe methicillin-resistant staphylococcal infections. Infection. 1985;13 (Suppl 1):S123–S128. doi: 10.1007/BF01644232. [DOI] [PubMed] [Google Scholar]
  20. Sabath L. D. Mechanisms of resistance to beta-lactam antibiotics in strains of Staphylococcus aureus. Ann Intern Med. 1982 Sep;97(3):339–344. doi: 10.7326/0003-4819-97-3-339. [DOI] [PubMed] [Google Scholar]
  21. Saravolatz L. D., Pohlod D. J., Arking L. M. Community-acquired methicillin-resistant Staphylococcus aureus infections: a new source for nosocomial outbreaks. Ann Intern Med. 1982 Sep;97(3):325–329. doi: 10.7326/0003-4819-97-3-325. [DOI] [PubMed] [Google Scholar]
  22. Shanholtzer C. J., Peterson L. R., Mohn M. L., Moody J. A., Gerding D. N. MBCs for Staphylococcus aureus as determined by macrodilution and microdilution techniques. Antimicrob Agents Chemother. 1984 Aug;26(2):214–219. doi: 10.1128/aac.26.2.214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Slama T. G., Sklar S. J., Misinski J., Fess S. W. Randomized comparison of cefamandole, cefazolin, and cefuroxime prophylaxis in open-heart surgery. Antimicrob Agents Chemother. 1986 May;29(5):744–747. doi: 10.1128/aac.29.5.744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Thomas M. G., Lang S. D. In-vitro activity of coumermycin against methicillin-resistant staphylococci: a comparison with six other agents. J Antimicrob Chemother. 1986 Aug;18(2):171–175. doi: 10.1093/jac/18.2.171. [DOI] [PubMed] [Google Scholar]
  25. Thornsberry C., McDougal L. K. Successful use of broth microdilution in susceptibility tests for methicillin-resistant (heteroresistant) staphylococci. J Clin Microbiol. 1983 Nov;18(5):1084–1091. doi: 10.1128/jcm.18.5.1084-1091.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Vernon G. N., Russell A. D. Effects of methicillin, cephaloridine and cephalothin on the growth, lysis and viability of some methicillin-resistant strains of Staphylococcus aureus at different temperatures. J Antimicrob Chemother. 1976 Mar;2(1):41–48. doi: 10.1093/jac/2.1.41. [DOI] [PubMed] [Google Scholar]
  27. Woods G. L., Knapp C. C., Washington J. A., 2nd Relationship between cefamandole and cefuroxime activity against oxacillin-resistant Staphylococcus epidermidis and oxacillin resistance phenotype. Antimicrob Agents Chemother. 1987 Sep;31(9):1332–1337. doi: 10.1128/aac.31.9.1332. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES