Full Text
The Full Text of this article is available as a PDF (98.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Backström M. C., Kuusela A. L., Mäki R. Metabolic bone disease of prematurity. Ann Med. 1996 Aug;28(4):275–282. doi: 10.3109/07853899608999080. [DOI] [PubMed] [Google Scholar]
- Bishop N. Bone disease in preterm infants. Arch Dis Child. 1989 Oct;64(10 Spec No):1403–1409. doi: 10.1136/adc.64.10_spec_no.1403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Congdon P. J., Horsman A., Ryan S. W., Truscott J. G., Durward H. Spontaneous resolution of bone mineral depletion in preterm infants. Arch Dis Child. 1990 Oct;65(10 Spec No):1038–1042. doi: 10.1136/adc.65.10_spec_no.1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dahlenburg S. L., Bishop N. J., Lucas A. Are preterm infants at risk for subsequent fractures? Arch Dis Child. 1989 Oct;64(10 Spec No):1384–1385. doi: 10.1136/adc.64.10_spec_no.1384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fewtrell M. S., Prentice A., Jones S. C., Bishop N. J., Stirling D., Buffenstein R., Lunt M., Cole T. J., Lucas A. Bone mineralization and turnover in preterm infants at 8-12 years of age: the effect of early diet. J Bone Miner Res. 1999 May;14(5):810–820. doi: 10.1359/jbmr.1999.14.5.810. [DOI] [PubMed] [Google Scholar]
- Frost H. M., Schönau E. The "muscle-bone unit" in children and adolescents: a 2000 overview. J Pediatr Endocrinol Metab. 2000 Jun;13(6):571–590. doi: 10.1515/jpem.2000.13.6.571. [DOI] [PubMed] [Google Scholar]
- Greer F. R. Osteopenia of prematurity. Annu Rev Nutr. 1994;14:169–185. doi: 10.1146/annurev.nu.14.070194.001125. [DOI] [PubMed] [Google Scholar]
- Helin I., Landin L. A., Nilsson B. E. Bone mineral content in preterm infants at age 4 to 16. Acta Paediatr Scand. 1985 Mar;74(2):264–267. doi: 10.1111/j.1651-2227.1985.tb10962.x. [DOI] [PubMed] [Google Scholar]
- Hori C., Tsukahara H., Fujii Y., Kawamitsu T., Konishi Y., Yamamoto K., Ishii Y., Sudo M. Bone mineral status in preterm-born children: assessment by dual-energy X-ray absorptiometry. Biol Neonate. 1995;68(4):254–258. doi: 10.1159/000244243. [DOI] [PubMed] [Google Scholar]
- Horsman A., Ryan S. W., Congdon P. J., Truscott J. G., Simpson M. Bone mineral content and body size 65 to 100 weeks' postconception in preterm and full term infants. Arch Dis Child. 1989 Nov;64(11):1579–1586. doi: 10.1136/adc.64.11.1579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kanis J. A., Melton L. J., 3rd, Christiansen C., Johnston C. C., Khaltaev N. The diagnosis of osteoporosis. J Bone Miner Res. 1994 Aug;9(8):1137–1141. doi: 10.1002/jbmr.5650090802. [DOI] [PubMed] [Google Scholar]
- Lapillonne A. A., Glorieux F. H., Salle B. L., Braillon P. M., Chambon M., Rigo J., Putet G., Senterre J. Mineral balance and whole body bone mineral content in very low-birth-weight infants. Acta Paediatr Suppl. 1994 Dec;405:117–122. doi: 10.1111/j.1651-2227.1994.tb13409.x. [DOI] [PubMed] [Google Scholar]
- Moyer-Mileur L. J., Brunstetter V., McNaught T. P., Gill G., Chan G. M. Daily physical activity program increases bone mineralization and growth in preterm very low birth weight infants. Pediatrics. 2000 Nov;106(5):1088–1092. doi: 10.1542/peds.106.5.1088. [DOI] [PubMed] [Google Scholar]
- Nelson D. A., Koo W. W. Interpretation of absorptiometric bone mass measurements in the growing skeleton: issues and limitations. Calcif Tissue Int. 1999 Jul;65(1):1–3. doi: 10.1007/s002239900648. [DOI] [PubMed] [Google Scholar]
- Parfitt A. M., Drezner M. K., Glorieux F. H., Kanis J. A., Malluche H., Meunier P. J., Ott S. M., Recker R. R. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 1987 Dec;2(6):595–610. doi: 10.1002/jbmr.5650020617. [DOI] [PubMed] [Google Scholar]
- Rauch F., Schoenau E. Changes in bone density during childhood and adolescence: an approach based on bone's biological organization. J Bone Miner Res. 2001 Apr;16(4):597–604. doi: 10.1359/jbmr.2001.16.4.597. [DOI] [PubMed] [Google Scholar]
- Rauch F., Schoenau E. The developing bone: slave or master of its cells and molecules? Pediatr Res. 2001 Sep;50(3):309–314. doi: 10.1203/00006450-200109000-00003. [DOI] [PubMed] [Google Scholar]
- Rigo J., De Curtis M., Pieltain C., Picaud J. C., Salle B. L., Senterre J. Bone mineral metabolism in the micropremie. Clin Perinatol. 2000 Mar;27(1):147–170. doi: 10.1016/s0095-5108(05)70011-7. [DOI] [PubMed] [Google Scholar]
- Rodríguez J. I., Garcia-Alix A., Palacios J., Paniagua R. Changes in the long bones due to fetal immobility caused by neuromuscular disease. A radiographic and histological study. J Bone Joint Surg Am. 1988 Aug;70(7):1052–1060. [PubMed] [Google Scholar]
- Rodríguez J. I., Palacios J., García-Alix A., Pastor I., Paniagua R. Effects of immobilization on fetal bone development. A morphometric study in newborns with congenital neuromuscular diseases with intrauterine onset. Calcif Tissue Int. 1988 Dec;43(6):335–339. doi: 10.1007/BF02553275. [DOI] [PubMed] [Google Scholar]
- Schanler R. J., Burns P. A., Abrams S. A., Garza C. Bone mineralization outcomes in human milk-fed preterm infants. Pediatr Res. 1992 Jun;31(6):583–586. doi: 10.1203/00006450-199206000-00009. [DOI] [PubMed] [Google Scholar]