Skip to main content
Archives of Disease in Childhood. Fetal and Neonatal Edition logoLink to Archives of Disease in Childhood. Fetal and Neonatal Edition
. 2002 Mar;86(2):F120–F123. doi: 10.1136/fn.86.2.F120

Effect of salt supplementation of newborn premature infants on neurodevelopmental outcome at 10–13 years of age

J Al-Dahhan, L Jannoun, G Haycock
PMCID: PMC1721384  PMID: 11882555

Abstract

Background: The nutritional requirements of prematurely born infants are different from those of babies born at term. Inadequate or inappropriate dietary intake in the neonatal period may have long term adverse consequences on neurodevelopmental function. The late effect of neonatal sodium deficiency or repletion in the premature human infant on neurological development and function has not been examined, despite evidence in animals of a serious adverse effect of salt deprivation on growth of the central nervous system.

Methods: Thirty seven of 46 children who had been born prematurely (gestational age of 33 weeks or less) and allocated to diets containing 1–1.5 mmol sodium/day (unsupplemented) or 4–5 mmol sodium/day (supplemented) from the 4th to the 14th postnatal day were recalled at the age of 10–13 years. Detailed studies of neurodevelopmental performance were made, including motor function and assessment of intelligence (IQ), memory and learning, language and executive skills, and behaviour. Sixteen of the children were found to have been in the supplemented group and 21 in the unsupplemented group.

Results: Children who had been in the supplemented group performed better in all modalities tested than those from the unsupplemented group. The differences were statistically significant (analysis of variance) for motor function, performance IQ, the general memory index, and behaviour as assessed by the children's parents. The supplemented children outperformed the unsupplemented controls by 10% in all three components of the memory and learning tests (difference not significant but p < 0.1 for each) and in language function (p < 0.05 for object naming) and educational attainment (p < 0.05 for arithmetic age).

Conclusions: Infants born at or before 33 weeks gestation require a higher sodium intake in the first two weeks of postnatal life than those born at or near term, and failure to provide such an intake (4–5 mmol/day) may predispose to poor neurodevelopmental outcome in the second decade of life.

Full Text

The Full Text of this article is available as a PDF (89.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Dahhan J., Haycock G. B., Chantler C., Stimmler L. Sodium homeostasis in term and preterm neonates. II. Gastrointestinal aspects. Arch Dis Child. 1983 May;58(5):343–345. doi: 10.1136/adc.58.5.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Al-Dahhan J., Haycock G. B., Nichol B., Chantler C., Stimmler L. Sodium homeostasis in term and preterm neonates. III. Effect of salt supplementation. Arch Dis Child. 1984 Oct;59(10):945–950. doi: 10.1136/adc.59.10.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Atkinson S. A., Bryan M. H., Anderson G. H. Human milk feeding in premature infants: protein, fat, and carbohydrate balances in the first two weeks of life. J Pediatr. 1981 Oct;99(4):617–624. doi: 10.1016/s0022-3476(81)80275-2. [DOI] [PubMed] [Google Scholar]
  4. Aviv A., Kobayashi T., Higashino H., Bauman J. W., Jr, Yu S. S. Chronic sodium deficit in the immature rat: its effect on adaptation to sodium excess. Am J Physiol. 1982 Apr;242(4):E241–E247. doi: 10.1152/ajpendo.1982.242.4.E241. [DOI] [PubMed] [Google Scholar]
  5. Brooke O. G., Wood C., Barley J. Energy balance, nitrogen balance, and growth in preterm infants fed expressed breast milk, a premature infant formula, and two low-solute adapted formulae. Arch Dis Child. 1982 Dec;57(12):898–904. doi: 10.1136/adc.57.12.898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bursey R. G., Watson M. L. The effect of sodium restriction during gestation of offspring brain development in rats. Am J Clin Nutr. 1983 Jan;37(1):43–51. doi: 10.1093/ajcn/37.1.43. [DOI] [PubMed] [Google Scholar]
  7. Costarino A. T., Jr, Gruskay J. A., Corcoran L., Polin R. A., Baumgart S. Sodium restriction versus daily maintenance replacement in very low birth weight premature neonates: a randomized, blind therapeutic trial. J Pediatr. 1992 Jan;120(1):99–106. doi: 10.1016/s0022-3476(05)80611-0. [DOI] [PubMed] [Google Scholar]
  8. Dobbing J., Sands J. Vulnerability of developing brain not explained by cell number/cell size hypothesis. Early Hum Dev. 1981 Jul;5(3):227–231. doi: 10.1016/0378-3782(81)90030-x. [DOI] [PubMed] [Google Scholar]
  9. Dobbing J. Undernutrition and the developing brain. The relevance of animal models to the human problem. Am J Dis Child. 1970 Nov;120(5):411–415. doi: 10.1001/archpedi.1970.02100100075005. [DOI] [PubMed] [Google Scholar]
  10. Fine B. P., Ty A., Lestrange N., Levine O. R. Sodium deprivation growth failure in the rat: alterations in tissue composition and fluid spaces. J Nutr. 1987 Sep;117(9):1623–1628. doi: 10.1093/jn/117.9.1623. [DOI] [PubMed] [Google Scholar]
  11. Fine B. P., Ty A., Lestrange N., Maher E., Levine O. R. Diuretic-induced growth failure in rats and its reversal by sodium repletion. J Pharmacol Exp Ther. 1987 Jul;242(1):85–89. [PubMed] [Google Scholar]
  12. Forslund M., Bjerre I. Follow-up of preterm children. I. Neurological assessment at 4 years of age. Early Hum Dev. 1989 Sep;20(1):45–66. doi: 10.1016/0378-3782(89)90072-8. [DOI] [PubMed] [Google Scholar]
  13. Forslund M. Growth and motor performance in preterm children at 8 years of age. Acta Paediatr. 1992 Oct;81(10):840–842. doi: 10.1111/j.1651-2227.1992.tb12115.x. [DOI] [PubMed] [Google Scholar]
  14. Gross S. J. Growth and biochemical response of preterm infants fed human milk or modified infant formula. N Engl J Med. 1983 Feb 3;308(5):237–241. doi: 10.1056/NEJM198302033080501. [DOI] [PubMed] [Google Scholar]
  15. Hartnoll G., Bétrémieux P., Modi N. Randomised controlled trial of postnatal sodium supplementation in infants of 25-30 weeks gestational age: effects on cardiopulmonary adaptation. Arch Dis Child Fetal Neonatal Ed. 2001 Jul;85(1):F29–F32. doi: 10.1136/fn.85.1.F29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hartnoll G., Bétrémieux P., Modi N. Randomised controlled trial of postnatal sodium supplementation on body composition in 25 to 30 week gestational age infants. Arch Dis Child Fetal Neonatal Ed. 2000 Jan;82(1):F24–F28. doi: 10.1136/fn.82.1.F24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hartnoll G., Bétrémieux P., Modi N. Randomised controlled trial of postnatal sodium supplementation on oxygen dependency and body weight in 25-30 week gestational age infants. Arch Dis Child Fetal Neonatal Ed. 2000 Jan;82(1):F19–F23. doi: 10.1136/fn.82.1.F19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Haycock G. B. The influence of sodium on growth in infancy. Pediatr Nephrol. 1993 Dec;7(6):871–875. doi: 10.1007/BF01213376. [DOI] [PubMed] [Google Scholar]
  19. Koo W. W., Guan Z. P., Tsang R. C., Laskarzewski P., Neumann V. Growth failure and decreased bone mineral of newborn rats with chronic furosemide therapy. Pediatr Res. 1986 Jan;20(1):74–78. doi: 10.1203/00006450-198601000-00021. [DOI] [PubMed] [Google Scholar]
  20. Levene M., Dowling S., Graham M., Fogelman K., Galton M., Phillips M. Impaired motor function (clumsiness) in 5 year old children: correlation with neonatal ultrasound scans. Arch Dis Child. 1992 Jun;67(6):687–690. doi: 10.1136/adc.67.6.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lucas A., Gore S. M., Cole T. J., Bamford M. F., Dossetor J. F., Barr I., Dicarlo L., Cork S., Lucas P. J. Multicentre trial on feeding low birthweight infants: effects of diet on early growth. Arch Dis Child. 1984 Aug;59(8):722–730. doi: 10.1136/adc.59.8.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lucas A., Morley R., Cole T. J., Gore S. M., Lucas P. J., Crowle P., Pearse R., Boon A. J., Powell R. Early diet in preterm babies and developmental status at 18 months. Lancet. 1990 Jun 23;335(8704):1477–1481. doi: 10.1016/0140-6736(90)93026-l. [DOI] [PubMed] [Google Scholar]
  23. Lucas A., Morley R., Cole T. J., Lister G., Leeson-Payne C. Breast milk and subsequent intelligence quotient in children born preterm. Lancet. 1992 Feb 1;339(8788):261–264. doi: 10.1016/0140-6736(92)91329-7. [DOI] [PubMed] [Google Scholar]
  24. Lynch A., Smart J. L., Dobbing J. Motor co-ordination and cerebellar size in adult rats undernourished in early life. Brain Res. 1975 Jan 10;83(2):249–259. doi: 10.1016/0006-8993(75)90934-8. [DOI] [PubMed] [Google Scholar]
  25. Marlow N., Roberts B. L., Cooke R. W. Motor skills in extremely low birthweight children at the age of 6 years. Arch Dis Child. 1989 Jun;64(6):839–847. doi: 10.1136/adc.64.6.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Marlow N., Roberts L., Cooke R. Outcome at 8 years for children with birth weights of 1250 g or less. Arch Dis Child. 1993 Mar;68(3 Spec No):286–290. doi: 10.1136/adc.68.3_spec_no.286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Murphy D. J., Hope P. L., Johnson A. Neonatal risk factors for cerebral palsy in very preterm babies: case-control study. BMJ. 1997 Feb 8;314(7078):404–408. doi: 10.1136/bmj.314.7078.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mutch L., Leyland A., McGee A. Patterns of neuropsychological function in a low-birthweight population. Dev Med Child Neurol. 1993 Nov;35(11):943–956. doi: 10.1111/j.1469-8749.1993.tb11576.x. [DOI] [PubMed] [Google Scholar]
  29. Sulyok E., Gyódi G., Ertl T., Bódis J., Hartmann G. The influence of NaCl supplementation on the postnatal development of urinary excretion of noradrenaline, dopamine, and serotonin in premature infants. Pediatr Res. 1985 Jan;19(1):5–8. doi: 10.1203/00006450-198501000-00002. [DOI] [PubMed] [Google Scholar]
  30. Tirosh E. Fine motor deficit: an etiologically distinct entity. Pediatr Neurol. 1994 May;10(3):213–216. doi: 10.1016/0887-8994(94)90025-6. [DOI] [PubMed] [Google Scholar]
  31. Vanpée M., Herin P., Broberger U., Aperia A. Sodium supplementation optimizes weight gain in preterm infants. Acta Paediatr. 1995 Nov;84(11):1312–1314. doi: 10.1111/j.1651-2227.1995.tb13556.x. [DOI] [PubMed] [Google Scholar]
  32. Wassner S. J. Altered growth and protein turnover in rats fed sodium-deficient diets. Pediatr Res. 1989 Dec;26(6):608–613. doi: 10.1203/00006450-198912000-00019. [DOI] [PubMed] [Google Scholar]
  33. Wassner S. J., Kulin H. E. Diminished linear growth associated with chronic salt depletion. Clin Pediatr (Phila) 1990 Dec;29(12):719–721. doi: 10.1177/000992289002901208. [DOI] [PubMed] [Google Scholar]
  34. Wassner S. J. The effect of sodium repletion on growth and protein turnover in sodium-depleted rats. Pediatr Nephrol. 1991 Jul;5(4):501–504. doi: 10.1007/BF01453690. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood Fetal and Neonatal Edition are provided here courtesy of BMJ Publishing Group

RESOURCES