Skip to main content
Archives of Disease in Childhood. Fetal and Neonatal Edition logoLink to Archives of Disease in Childhood. Fetal and Neonatal Edition
. 2004 Jan;89(1):F84–F87. doi: 10.1136/fn.89.1.F84

How safe is intermittent positive pressure ventilation in preterm babies ventilated from delivery to newborn intensive care unit?

M Tracy, L Downe, J Holberton
PMCID: PMC1721635  PMID: 14711865

Abstract

Objectives: To examine whether clinically determined ventilator settings will produce acceptable arterial blood gas values on arrival, in preterm infants ventilated from delivery to the newborn intensive care unit (NICU). Further, to examine the usefulness of tidal volume and minute ventilation measurements at this time.

Design: A prospective observational cohort study in a tertiary level 3 NICU.

Patients: Twenty six preterm infants requiring intubation and mechanical ventilation at the point of delivery to the NICU.

Setting: Infants who required mechanical ventilation were monitored with a blinded Ventrak 1550 dynamic lung function monitor from the point of delivery to the NICU. A Dräger Babylog 2000 transport ventilator was set up to achieve adequate chest wall movement, and FIO2 was adjusted to achieve preductal SaO2 of 90–98%. Dynamic lung function monitoring data were recorded and related to the arterial blood gas taken on arrival.

Results: Mean gestation was 28 weeks (range 23–34) and mean birth weight was 1180 g (range 480–4200). A quarter (26% (95% confidence interval (CI) 12% to 48%)) were hypocarbic, with 20% (95% CI 7% to 39%) below 25 mm Hg, and 38% (95% CI 20% to 60%) had hyperoxia. Some (20% (95% CI 7% to 39%)) were both hypocarbic and hyperoxic. Total minute ventilation per kilogram correlated significantly with the inverse of PaCO2 (p < 0.001).

Conclusions: Clinically determining appropriate mechanical ventilation settings from the point of delivery to the NICU is difficult, and inadvertent overventilation may be common. Severe hyperoxia can occur in spite of adjustment of the FIO2 concentration to achieve an SaO2 range of 90–98%. Limiting minute ventilation during resuscitation may prevent hypocarbia.

Full Text

The Full Text of this article is available as a PDF (270.8 KB).

Figure 1 .

Figure 1

Box plot of PaO2 against hypocarbia.

Figure 2 .

Figure 2

Linear regression of PaCO2 against total minute ventilation. PaCO2 = 8.002 - 0.007x. r2 = 0.68; r = –0.82; p < 0.0001.

Figure 3 .

Figure 3

Box plot of PaCO2 grouped by respiratory distress syndrome (RDS).

Figure 4 .

Figure 4

Scatterplot of SaO2 by PaO2.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auten R. L., Vozzelli M., Clark R. H. Volutrauma. What is it, and how do we avoid it? Clin Perinatol. 2001 Sep;28(3):505–515. doi: 10.1016/s0095-5108(05)70103-2. [DOI] [PubMed] [Google Scholar]
  2. Björklund L. J., Ingimarsson J., Curstedt T., John J., Robertson B., Werner O., Vilstrup C. T. Manual ventilation with a few large breaths at birth compromises the therapeutic effect of subsequent surfactant replacement in immature lambs. Pediatr Res. 1997 Sep;42(3):348–355. doi: 10.1203/00006450-199709000-00016. [DOI] [PubMed] [Google Scholar]
  3. Calvert S. A., Hoskins E. M., Fong K. W., Forsyth S. C. Etiological factors associated with the development of periventricular leukomalacia. Acta Paediatr Scand. 1987 Mar;76(2):254–259. doi: 10.1111/j.1651-2227.1987.tb10456.x. [DOI] [PubMed] [Google Scholar]
  4. Clark R. H., Gerstmann D. R., Jobe A. H., Moffitt S. T., Slutsky A. S., Yoder B. A. Lung injury in neonates: causes, strategies for prevention, and long-term consequences. J Pediatr. 2001 Oct;139(4):478–486. doi: 10.1067/mpd.2001.118201. [DOI] [PubMed] [Google Scholar]
  5. Coalson J. J. Experimental models of bronchopulmonary dysplasia. Biol Neonate. 1997;71 (Suppl 1):35–38. doi: 10.1159/000244452. [DOI] [PubMed] [Google Scholar]
  6. Coalson J. J., Winter V. T., Gerstmann D. R., Idell S., King R. J., Delemos R. A. Pathophysiologic, morphometric, and biochemical studies of the premature baboon with bronchopulmonary dysplasia. Am Rev Respir Dis. 1992 Apr;145(4 Pt 1):872–881. doi: 10.1164/ajrccm/145.4_Pt_1.872. [DOI] [PubMed] [Google Scholar]
  7. Collins M. P., Lorenz J. M., Jetton J. R., Paneth N. Hypocapnia and other ventilation-related risk factors for cerebral palsy in low birth weight infants. Pediatr Res. 2001 Dec;50(6):712–719. doi: 10.1203/00006450-200112000-00014. [DOI] [PubMed] [Google Scholar]
  8. Dammann O., Allred E. N., Kuban K. C., van Marter L. J., Stewart J. E., Pagano M., Leviton A., Development Epidemiology Network Investigators Hypocarbia during the first 24 postnatal hours and white matter echolucencies in newborns < or = 28 weeks gestation. Pediatr Res. 2001 Mar;49(3):388–393. doi: 10.1203/00006450-200103000-00013. [DOI] [PubMed] [Google Scholar]
  9. Dreyfuss D., Saumon G. Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis. 1993 Nov;148(5):1194–1203. doi: 10.1164/ajrccm/148.5.1194. [DOI] [PubMed] [Google Scholar]
  10. Dreyfuss D., Saumon G. Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med. 1998 Jan;157(1):294–323. doi: 10.1164/ajrccm.157.1.9604014. [DOI] [PubMed] [Google Scholar]
  11. Garland J. S., Buck R. K., Allred E. N., Leviton A. Hypocarbia before surfactant therapy appears to increase bronchopulmonary dysplasia risk in infants with respiratory distress syndrome. Arch Pediatr Adolesc Med. 1995 Jun;149(6):617–622. doi: 10.1001/archpedi.1995.02170190027005. [DOI] [PubMed] [Google Scholar]
  12. Graziani L. J., Baumgart S., Desai S., Stanley C., Gringlas M., Spitzer A. R. Clinical antecedents of neurologic and audiologic abnormalities in survivors of neonatal extracorporeal membrane oxygenation. J Child Neurol. 1997 Oct;12(7):415–422. doi: 10.1177/088307389701200702. [DOI] [PubMed] [Google Scholar]
  13. Graziani L. J., Gringlas M., Baumgart S. Cerebrovascular complications and neurodevelopmental sequelae of neonatal ECMO. Clin Perinatol. 1997 Sep;24(3):655–675. [PubMed] [Google Scholar]
  14. Lundstrøm K. E., Pryds O., Greisen G. Oxygen at birth and prolonged cerebral vasoconstriction in preterm infants. Arch Dis Child Fetal Neonatal Ed. 1995 Sep;73(2):F81–F86. doi: 10.1136/fn.73.2.f81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mirro R., Busija D., Green R., Leffler C. Relationship between mean airway pressure, cardiac output, and organ blood flow with normal and decreased respiratory compliance. J Pediatr. 1987 Jul;111(1):101–106. doi: 10.1016/s0022-3476(87)80354-2. [DOI] [PubMed] [Google Scholar]
  16. Okumura A., Hayakawa F., Kato T., Itomi K., Maruyama K., Ishihara N., Kubota T., Suzuki M., Sato Y., Kuno K. Hypocarbia in preterm infants with periventricular leukomalacia: the relation between hypocarbia and mechanical ventilation. Pediatrics. 2001 Mar;107(3):469–475. doi: 10.1542/peds.107.3.469. [DOI] [PubMed] [Google Scholar]
  17. Papile L. A., Burstein J., Burstein R., Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr. 1978 Apr;92(4):529–534. doi: 10.1016/s0022-3476(78)80282-0. [DOI] [PubMed] [Google Scholar]
  18. Roske K., Foitzik B., Wauer R. R., Schmalisch G. Accuracy of volume measurements in mechanically ventilated newborns: a comparative study of commercial devices. J Clin Monit Comput. 1998 Aug;14(6):413–420. doi: 10.1023/a:1009993916980. [DOI] [PubMed] [Google Scholar]
  19. Upton C. J., Milner A. D. Endotracheal resuscitation of neonates using a rebreathing bag. Arch Dis Child. 1991 Jan;66(1 Spec No):39–42. doi: 10.1136/adc.66.1_spec_no.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Volpe J. J. Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res. 2001 Nov;50(5):553–562. doi: 10.1203/00006450-200111000-00003. [DOI] [PubMed] [Google Scholar]
  21. Wallin L. A., Rosenfeld C. R., Laptook A. R., Maravilla A. M., Strand C., Campbell N., Dowling S., Lasky R. E. Neonatal intracranial hemorrhage: II. Risk factor analysis in an inborn population. Early Hum Dev. 1990 Aug;23(2):129–137. doi: 10.1016/0378-3782(90)90136-7. [DOI] [PubMed] [Google Scholar]
  22. Wiswell T. E., Graziani L. J., Kornhauser M. S., Stanley C., Merton D. A., McKee L., Spitzer A. R. Effects of hypocarbia on the development of cystic periventricular leukomalacia in premature infants treated with high-frequency jet ventilation. Pediatrics. 1996 Nov;98(5):918–924. [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood Fetal and Neonatal Edition are provided here courtesy of BMJ Publishing Group

RESOURCES