Skip to main content
Archives of Disease in Childhood. Fetal and Neonatal Edition logoLink to Archives of Disease in Childhood. Fetal and Neonatal Edition
. 2005 Jan;90(1):F49–F52. doi: 10.1136/adc.2003.048785

Do hyperoxaemia and hypocapnia add to the risk of brain injury after intrapartum asphyxia?

G Klinger, J Beyene, P Shah, M Perlman
PMCID: PMC1721814  PMID: 15613575

Abstract

Background: Episodes of hyperoxaemia and hypocapnia, which may contribute to brain injury, occur unintentionally in severely asphyxiated neonates in the first postnatal hours.

Objective: To determine whether hyperoxaemia and/or hypocapnia during the first 2 hours of life add to the risk of brain injury after intrapartum asphyxia.

Methods: Retrospective cohort study in term infants with post-asphyxial hypoxic ischaemic encephalopathy (HIE) born between 1985 and 1995. Severe and moderate hyperoxaemia were defined as PaO2 >26.6 and PaO2 >13.3 kPa (200 and 100 mm Hg). Severe and moderate hypocapnia were defined as PaCO2 <2.6 and PaCO2 <3.3 kPa (20 and 25 mm Hg). Adverse outcome ascertained by age 24 months was defined as death, severe cerebral palsy, or any cerebral palsy with blindness, deafness, or developmental delay. With outcome as the dependent variable, multivariate analyses were performed including hyperoxaemic and hypocapnic variables, and factors adjusted for initial disease severity.

Results: Of 244 infants, 218 had known outcomes, 127 of which were adverse (64 deaths, 63 neurodevelopmental deficits). Multivariate analyses showed an association between adverse outcome and episodes of severe hyperoxaemia (odds ratio (OR) 3.85, 95% confidence interval (CI) 1.67 to 8.88, p = 0.002), and severe hypocapnia (OR 2.34, 95% CI 1.02 to 5.37, p = 0.044). The risk of adverse outcome was highest in infants who had both severe hyperoxaemia and severe hypocapnia (OR 4.56, 95% CI 1.4 to 14.9, p = 0.012).

Conclusions: Severe hyperoxaemia and severe hypocapnia were associated with adverse outcome in infants with post-asphyxial HIE. During the first hours of life, oxygen supplementation and ventilation should be rigorously controlled.

Full Text

The Full Text of this article is available as a PDF (62.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Capani F., Loidl C. F., Aguirre F., Piehl L., Facorro G., Hager A., De Paoli T., Farach H., Pecci-Saavedra J. Changes in reactive oxygen species (ROS) production in rat brain during global perinatal asphyxia: an ESR study. Brain Res. 2001 Sep 28;914(1-2):204–207. doi: 10.1016/s0006-8993(01)02781-0. [DOI] [PubMed] [Google Scholar]
  2. Ekert P., Perlman M., Steinlin M., Hao Y. Predicting the outcome of postasphyxial hypoxic-ischemic encephalopathy within 4 hours of birth. J Pediatr. 1997 Oct;131(4):613–617. doi: 10.1016/s0022-3476(97)70072-6. [DOI] [PubMed] [Google Scholar]
  3. Gillan J. E., Pape K. E., Cutz E. Association of changes in bombesin immunoreactive neuroendocrine cells in lungs of newborn infants with persistent fetal circulation and brainstem damage due to birth asphyxia. Pediatr Res. 1986 Sep;20(9):828–833. doi: 10.1203/00006450-198609000-00003. [DOI] [PubMed] [Google Scholar]
  4. Graziani L. J., Spitzer A. R., Mitchell D. G., Merton D. A., Stanley C., Robinson N., McKee L. Mechanical ventilation in preterm infants: neurosonographic and developmental studies. Pediatrics. 1992 Oct;90(4):515–522. [PubMed] [Google Scholar]
  5. Hall C. M., Milligan D. W. A., Berrington J. Probable adverse reaction to a pharmaceutical excipient. Arch Dis Child Fetal Neonatal Ed. 2004 Mar;89(2):F184–F184. doi: 10.1136/adc.2002.024927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Koons A. H., Wurtzel D., Metcalf J. M., Fellus J., Vannucci R., Hiatt M., Hegyi T. Cerebral blood flow measurements in the newborn dog. Biol Neonate. 1993;63(2):120–128. doi: 10.1159/000243920. [DOI] [PubMed] [Google Scholar]
  7. Lièvre V., Becuwe P., Bianchi A., Bossenmeyer-Pourié C., Koziel V., Franck P., Nicolas M. B., Dauça M., Vert P., Daval J. L. Intracellular generation of free radicals and modifications of detoxifying enzymes in cultured neurons from the developing rat forebrain in response to transient hypoxia. Neuroscience. 2001;105(2):287–297. doi: 10.1016/s0306-4522(01)00189-0. [DOI] [PubMed] [Google Scholar]
  8. Lundstrøm K. E., Pryds O., Greisen G. Oxygen at birth and prolonged cerebral vasoconstriction in preterm infants. Arch Dis Child Fetal Neonatal Ed. 1995 Sep;73(2):F81–F86. doi: 10.1136/fn.73.2.f81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Myers R. E. Two patterns of perinatal brain damage and their conditions of occurrence. Am J Obstet Gynecol. 1972 Jan 15;112(2):246–276. doi: 10.1016/0002-9378(72)90124-x. [DOI] [PubMed] [Google Scholar]
  10. Okumura A., Hayakawa F., Kato T., Itomi K., Maruyama K., Ishihara N., Kubota T., Suzuki M., Sato Y., Kuno K. Hypocarbia in preterm infants with periventricular leukomalacia: the relation between hypocarbia and mechanical ventilation. Pediatrics. 2001 Mar;107(3):469–475. doi: 10.1542/peds.107.3.469. [DOI] [PubMed] [Google Scholar]
  11. Phelan J. P., Ahn M. O. Perinatal observations in forty-eight neurologically impaired term infants. Am J Obstet Gynecol. 1994 Aug;171(2):424–431. doi: 10.1016/0002-9378(94)90278-x. [DOI] [PubMed] [Google Scholar]
  12. Pryds O., Greisen G., Lou H., Friis-Hansen B. Heterogeneity of cerebral vasoreactivity in preterm infants supported by mechanical ventilation. J Pediatr. 1989 Oct;115(4):638–645. doi: 10.1016/s0022-3476(89)80301-4. [DOI] [PubMed] [Google Scholar]
  13. Ramji S., Ahuja S., Thirupuram S., Rootwelt T., Rooth G., Saugstad O. D. Resuscitation of asphyxic newborn infants with room air or 100% oxygen. Pediatr Res. 1993 Dec;34(6):809–812. doi: 10.1203/00006450-199312000-00023. [DOI] [PubMed] [Google Scholar]
  14. Ramji S., Rasaily R., Mishra P. K., Narang A., Jayam S., Kapoor A. N., Kambo I., Mathur A., Saxena B. N. Resuscitation of asphyxiated newborns with room air or 100% oxygen at birth: a multicentric clinical trial. Indian Pediatr. 2003 Jun;40(6):510–517. [PubMed] [Google Scholar]
  15. Rosenberg A. A., Murdaugh E., White C. W. The role of oxygen free radicals in postasphyxia cerebral hypoperfusion in newborn lambs. Pediatr Res. 1989 Sep;26(3):215–219. doi: 10.1203/00006450-198909000-00012. [DOI] [PubMed] [Google Scholar]
  16. Rosenberg A. A. Response of the cerebral circulation to hypocarbia in postasphyxia newborn lambs. Pediatr Res. 1992 Nov;32(5):537–541. doi: 10.1203/00006450-199211000-00008. [DOI] [PubMed] [Google Scholar]
  17. Saugstad O. D. Resuscitation of newborn infants with room air or oxygen. Semin Neonatol. 2001 Jun;6(3):233–239. doi: 10.1053/siny.2001.0049. [DOI] [PubMed] [Google Scholar]
  18. Saugstad O. D. Resuscitation of the asphyxic newborn infant: new insight leads to new therapeutic possibilities. Biol Neonate. 2001;79(3-4):258–260. doi: 10.1159/000047102. [DOI] [PubMed] [Google Scholar]
  19. Shah P. S., Raju N. V., Beyene J., Perlman M. Recovery of metabolic acidosis in term infants with postasphyxial hypoxic-ischemic encephalopathy. Acta Paediatr. 2003 Aug;92(8):941–947. [PubMed] [Google Scholar]
  20. Temesvári P., Karg E., Bódi I., Németh I., Pintér S., Lazics K., Domoki F., Bari F. Impaired early neurologic outcome in newborn piglets reoxygenated with 100% oxygen compared with room air after pneumothorax-induced asphyxia. Pediatr Res. 2001 Jun;49(6):812–819. doi: 10.1203/00006450-200106000-00017. [DOI] [PubMed] [Google Scholar]
  21. Vannucci R. C., Brucklacher R. M., Vannucci S. J. Effect of carbon dioxide on cerebral metabolism during hypoxia-ischemia in the immature rat. Pediatr Res. 1997 Jul;42(1):24–29. doi: 10.1203/00006450-199707000-00005. [DOI] [PubMed] [Google Scholar]
  22. Vannucci R. C., Towfighi J., Heitjan D. F., Brucklacher R. M. Carbon dioxide protects the perinatal brain from hypoxic-ischemic damage: an experimental study in the immature rat. Pediatrics. 1995 Jun;95(6):868–874. [PubMed] [Google Scholar]
  23. Vento Máximo, Asensi Miguel, Sastre Juan, Lloret Ana, García-Sala Fernando, Viña José. Oxidative stress in asphyxiated term infants resuscitated with 100% oxygen. J Pediatr. 2003 Mar;142(3):240–246. doi: 10.1067/mpd.2003.91. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood. Fetal and Neonatal Edition are provided here courtesy of BMJ Publishing Group

RESOURCES