Abstract
Objective: To assess the consequences of hypoxaemia and resuscitation with room air versus 100% O2 on cardiac troponin I (cTnI), cardiac output (CO), and pulmonary artery pressure (PAP) in newborn pigs.
Design: Twenty anaesthetised pigs (12–36 hours; 1.7–2.7 kg) were subjected to hypoxaemia by ventilation with 8% O2. When mean arterial blood pressure fell to 15 mm Hg, or arterial base excess was ⩽ –20 mmol/l, resuscitation was performed with 21% (n = 10) or 100% (n = 10) O2 for 30 minutes, then ventilation with 21% O2 for 120 minutes. Blood was analysed for cTnI. Ultrasound examinations of CO and PAP (estimated from tricuspid regurgitation velocity (TR-Vmax)) were performed at baseline, during hypoxia, and at the start of and during reoxygenation.
Results: cTnI increased from baseline to the end point (p<0.001), confirming a serious myocardial injury, with no differences between the 21% and 100% O2 group (p = 0.12). TR-Vmax increased during the insult and returned towards baseline values during reoxygenation, with no differences between the groups (p = 0.11) or between cTnI concentrations (p = 0.31). An inverse relation was found between increasing age and TR-Vmax during hypoxaemia (p = 0.034). CO per kg body weight increased during the early phase of hypoxaemia (p<0.001), then decreased. Changes in CO per kg were mainly due to changes in heart rate, with no differences between the groups during reoxygenation (p = 0.298).
Conclusion: Hypoxaemia affects the myocardium and PAP. During this limited period of observation, reoxygenation with 100% O2 showed no benefits compared with 21% O2 in normalising myocardial function and PAP. The important issue may be resuscitation and reoxygenation without hyperoxygenation.
Full Text
The Full Text of this article is available as a PDF (117.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bifano E. M., Pfannenstiel A. Duration of hyperventilation and outcome in infants with persistent pulmonary hypertension. Pediatrics. 1988 May;81(5):657–661. [PubMed] [Google Scholar]
- Børke W. B., Munkeby B. H., Mørkrid L., Thaulow E., Saugstad O. D. Resuscitation with 100% O(2) does not protect the myocardium in hypoxic newborn piglets. Arch Dis Child Fetal Neonatal Ed. 2004 Mar;89(2):F156–F160. doi: 10.1136/adc.2002.020594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Custer J. R., Hales C. A. Influence of alveolar oxygen on pulmonary vasoconstriction in newborn lambs versus sheep. Am Rev Respir Dis. 1985 Aug;132(2):326–331. doi: 10.1164/arrd.1985.132.2.326. [DOI] [PubMed] [Google Scholar]
- Daly M. D., Angell-James J. E., Elsner R. Role of carotid-body chemoreceptors and their reflex interactions in bradycardia and cardiac arrest. Lancet. 1979 Apr 7;1(8119):764–767. doi: 10.1016/s0140-6736(79)91218-2. [DOI] [PubMed] [Google Scholar]
- Davis Peter G., Tan Anton, O'Donnell Colm P. F., Schulze Andreas. Resuscitation of newborn infants with 100% oxygen or air: a systematic review and meta-analysis. Lancet. 2004 Oct 9;364(9442):1329–1333. doi: 10.1016/S0140-6736(04)17189-4. [DOI] [PubMed] [Google Scholar]
- Fike C. D., Kaplowitz M. R. Chronic hypoxia alters nitric oxide-dependent pulmonary vascular responses in lungs of newborn pigs. J Appl Physiol (1985) 1996 Nov;81(5):2078–2087. doi: 10.1152/jappl.1996.81.5.2078. [DOI] [PubMed] [Google Scholar]
- Friedman W. F. The intrinsic physiologic properties of the developing heart. Prog Cardiovasc Dis. 1972 Jul-Aug;15(1):87–111. doi: 10.1016/0033-0620(72)90006-0. [DOI] [PubMed] [Google Scholar]
- Fugelseth D., Satas S., Runde M., Hågå P., Thoresen M. Cardiac function and morphology studied by two-dimensional Doppler echocardiography in unsedated newborn pigs. Exp Physiol. 1999 Jan;84(1):69–78. doi: 10.1111/j.1469-445x.1999.tb00073.x. [DOI] [PubMed] [Google Scholar]
- Fugelseth D., Satas S., Steen P. A., Thoresen M. Cardiac output, pulmonary artery pressure, and patent ductus arteriosus during therapeutic cooling after global hypoxia-ischaemia. Arch Dis Child Fetal Neonatal Ed. 2003 May;88(3):F223–F228. doi: 10.1136/fn.88.3.F223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hambraeus-Jonzon K., Bindslev L., Mellgård A. J., Hedenstierna G. Hypoxic pulmonary vasoconstriction in human lungs. A stimulus-response study. Anesthesiology. 1997 Feb;86(2):308–315. doi: 10.1097/00000542-199702000-00006. [DOI] [PubMed] [Google Scholar]
- Hansmann Georg. Neonatal resuscitation on air: it is time to turn down the oxygen tanks [corrected]. Lancet. 2004 Oct 9;364(9442):1293–1294. doi: 10.1016/S0140-6736(04)17203-6. [DOI] [PubMed] [Google Scholar]
- Hirsch R., Landt Y., Porter S., Canter C. E., Jaffe A. S., Ladenson J. H., Grant J. W., Landt M. Cardiac troponin I in pediatrics: normal values and potential use in the assessment of cardiac injury. J Pediatr. 1997 Jun;130(6):872–877. doi: 10.1016/s0022-3476(97)70271-3. [DOI] [PubMed] [Google Scholar]
- Khalil Sherif K., Urso Richard G., Mintz-Hittner Helen A. Traumatic optic nerve injury occurring after forceps delivery of a term newborn. J AAPOS. 2003 Apr;7(2):146–147. doi: 10.1016/mpa.2003.S1091853103000119. [DOI] [PubMed] [Google Scholar]
- Kluckow M., Evans N. Relationship between blood pressure and cardiac output in preterm infants requiring mechanical ventilation. J Pediatr. 1996 Oct;129(4):506–512. doi: 10.1016/s0022-3476(96)70114-2. [DOI] [PubMed] [Google Scholar]
- Konduri Girija G., Mattei Janine. Role of oxidative phosphorylation and ATP release in mediating birth-related pulmonary vasodilation in fetal lambs. Am J Physiol Heart Circ Physiol. 2002 Jun 27;283(4):H1600–H1608. doi: 10.1152/ajpheart.00245.2002. [DOI] [PubMed] [Google Scholar]
- Lacey N. A., McWilliams S., Jan W., Bingham J. B. Case of the month: congenital unilateral proptosis. Br J Radiol. 2002 Feb;75(890):191–192. doi: 10.1259/bjr.75.890.750191. [DOI] [PubMed] [Google Scholar]
- Lee G. A., Sullivan T. J., Tsikleas G. P., Davis N. G. Congenital orbital teratoma. Aust N Z J Ophthalmol. 1997 Feb;25(1):63–66. doi: 10.1111/j.1442-9071.1997.tb01277.x. [DOI] [PubMed] [Google Scholar]
- Medbø S., Yu X. Q., Asberg A., Saugstad O. D. Pulmonary hemodynamics and plasma endothelin-1 during hypoxemia and reoxygenation with room air or 100% oxygen in a piglet model. Pediatr Res. 1998 Dec;44(6):843–849. doi: 10.1203/00006450-199812000-00004. [DOI] [PubMed] [Google Scholar]
- Nakamura H., del Nido P. J., Jimenez E., Sarin M., Feinberg H., Levitsky S. Age-related differences in cardiac susceptibility to ischemia/reperfusion injury. Response to deferoxamine. J Thorac Cardiovasc Surg. 1992 Jul;104(1):165–172. [PubMed] [Google Scholar]
- Nakanishi T., Okuda H., Nakazawa M., Takao A. Effect of acidosis on contractile function in the newborn rabbit heart. Pediatr Res. 1985 May;19(5):482–488. doi: 10.1203/00006450-198505000-00015. [DOI] [PubMed] [Google Scholar]
- Niermeyer S., Kattwinkel J., Van Reempts P., Nadkarni V., Phillips B., Zideman D., Azzopardi D., Berg R., Boyle D., Boyle R. International Guidelines for Neonatal Resuscitation: An excerpt from the Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care: International Consensus on Science. Contributors and Reviewers for the Neonatal Resuscitation Guidelines. Pediatrics. 2000 Sep;106(3):E29–E29. doi: 10.1542/peds.106.3.e29. [DOI] [PubMed] [Google Scholar]
- Osmundson G., Giangiacomo J. Traumatic optic neuropathy in a newborn. J Pediatr Ophthalmol Strabismus. 1999 Nov-Dec;36(6):349–350. doi: 10.3928/0191-3913-19991101-12. [DOI] [PubMed] [Google Scholar]
- Ranjit M. S. Cardiac abnormalities in birth asphyxia. Indian J Pediatr. 2000 Jul;67(7):529–532. doi: 10.1007/BF02760486. [DOI] [PubMed] [Google Scholar]
- Reid M. M., Jenkins J., McClure G. Sinusoidal heart rate rhythms in severe neonatal hypoxia. Arch Dis Child. 1979 Jun;54(6):432–435. doi: 10.1136/adc.54.6.432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riggs T. W., Rodriguez R., Snider A. R., Batton D. Doppler echocardiographic evaluation of right and left ventricular diastolic function in normal neonates. J Am Coll Cardiol. 1989 Mar 1;13(3):700–705. doi: 10.1016/0735-1097(89)90614-1. [DOI] [PubMed] [Google Scholar]
- Robillard B. G., Sires B. S., Pinczower E. F. Optic nerve size in traumatic optic neuropathy. J Craniomaxillofac Trauma. 1998 Spring;4(1):13–16. [PubMed] [Google Scholar]
- Robinson S. M., Cadwallader J. A., Hill P. M. Regional alveolar gas composition and lung function in sheep. Respir Physiol. 1979 Aug;37(3):239–254. doi: 10.1016/0034-5687(79)90073-2. [DOI] [PubMed] [Google Scholar]
- Sanderud J., Saugstad O. D. Oxygen radicals induce pulmonary vasoconstriction in pigs without activating plasma proteolytic cascade systems. Eur Surg Res. 1993 May-Jun;25(3):137–145. doi: 10.1159/000129268. [DOI] [PubMed] [Google Scholar]
- Saugstad O. D. Is oxygen more toxic than currently believed? Pediatrics. 2001 Nov;108(5):1203–1205. doi: 10.1542/peds.108.5.1203. [DOI] [PubMed] [Google Scholar]
- Saugstad O. D., Rootwelt T., Aalen O. Resuscitation of asphyxiated newborn infants with room air or oxygen: an international controlled trial: the Resair 2 study. Pediatrics. 1998 Jul;102(1):e1–e1. doi: 10.1542/peds.102.1.e1. [DOI] [PubMed] [Google Scholar]
- Saugstad Ola D., Ramji Siddarth, Irani Simin F., El-Meneza Safaa, Hernandez Emil A., Vento Maximo, Talvik Tiina, Solberg Rønnaug, Rootwelt Terje, Aalen Odd O. Resuscitation of newborn infants with 21% or 100% oxygen: follow-up at 18 to 24 months. Pediatrics. 2003 Aug;112(2):296–300. doi: 10.1542/peds.112.2.296. [DOI] [PubMed] [Google Scholar]
- Saugstad Ola Didrik, Ramji Siddarth, Vento Máximo. Resuscitation of depressed newborn infants with ambient air or pure oxygen: a meta-analysis. Biol Neonate. 2004 Sep 20;87(1):27–34. doi: 10.1159/000080950. [DOI] [PubMed] [Google Scholar]
- Sharikabad M. N., Hagelin E. M., Hagberg I. A., Lyberg T., Brørs O. Effect of calcium on reactive oxygen species in isolated rat cardiomyocytes during hypoxia and reoxygenation. J Mol Cell Cardiol. 2000 Mar;32(3):441–452. doi: 10.1006/jmcc.1999.1092. [DOI] [PubMed] [Google Scholar]
- Skinner J. R., Hunter S., Hey E. N. Haemodynamic features at presentation in persistent pulmonary hypertension of the newborn and outcome. Arch Dis Child Fetal Neonatal Ed. 1996 Jan;74(1):F26–F32. doi: 10.1136/fn.74.1.f26. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soll R. Consensus and controversy over resuscitation of the newborn infant. Lancet. 1999 Jul 3;354(9172):4–5. doi: 10.1016/S0140-6736(99)00149-X. [DOI] [PubMed] [Google Scholar]
- Steinhorn R. H. Persistent pulmonary hypertension of the newborn. Acta Anaesthesiol Scand Suppl. 1997;111:135–140. [PubMed] [Google Scholar]
- Tate R. M., Morris H. G., Schroeder W. R., Repine J. E. Oxygen metabolites stimulate thromboxane production and vasoconstriction in isolated saline-perfused rabbit lungs. J Clin Invest. 1984 Aug;74(2):608–613. doi: 10.1172/JCI111458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vento M., Asensi M., Sastre J., García-Sala F., Pallardó F. V., Viña J. Resuscitation with room air instead of 100% oxygen prevents oxidative stress in moderately asphyxiated term neonates. Pediatrics. 2001 Apr;107(4):642–647. doi: 10.1542/peds.107.4.642. [DOI] [PubMed] [Google Scholar]
