Skip to main content
Archives of Disease in Childhood. Fetal and Neonatal Edition logoLink to Archives of Disease in Childhood. Fetal and Neonatal Edition
. 2005 Nov;90(6):F505–F508. doi: 10.1136/adc.2004.070334

Impaired parasympathetic response to feeding in ventilated preterm babies

S Smith, A Doig, W Dudley
PMCID: PMC1721960  PMID: 15941824

Abstract

Background: Premature very low birthweight (VLBW) infants are born with an underdeveloped parasympathetic nervous system (PNS) which may limit their ability to respond adequately to feeding and may limit their capacities for extrauterine growth and development.

Objectives: To describe the patterns of autonomic response to feeding and identify relationships between change in heart period variability measures over time with selected infant characteristics.

Methods: Individual growth curve analysis techniques were used to describe the patterns of change over time in sympathetic and parasympathetic tone as measured by low and high frequency heart period power.

Results: Sixteen mechanically ventilated VLBW infants with a mean corrected gestational age of 30.4 weeks participated in the study. The low frequency (LF) power slope was –17.67 (p = 0.0002) and the high frequency (HF) power slope was –0.92 (0.0003). There was a significant relationship between HF slope and birth gestational age (r = –0.49, p = 0.05).

Conclusions: HF power, representing primarily parasympathetic activity, did not increase with enteral feeding as anticipated. LF power, an indicator of sympathetic tone, decreased during and after feeding suggesting the anticipated effect of inhibition of the sympathetic nervous system in response to the gut stimulus. Critically ill VLBW infants possess an overriding sympathetic response, but may not have adequate PNS tone development.

Full Text

The Full Text of this article is available as a PDF (70.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burr R. L., Cowan M. J. Autoregressive spectral models of heart rate variability. Practical issues. J Electrocardiol. 1992;25 (Suppl):224–233. doi: 10.1016/0022-0736(92)90108-c. [DOI] [PubMed] [Google Scholar]
  2. Chatow U., Davidson S., Reichman B. L., Akselrod S. Development and maturation of the autonomic nervous system in premature and full-term infants using spectral analysis of heart rate fluctuations. Pediatr Res. 1995 Mar;37(3):294–302. doi: 10.1203/00006450-199503000-00008. [DOI] [PubMed] [Google Scholar]
  3. Clairambault J., Curzi-Dascalova L., Kauffmann F., Médigue C., Leffler C. Heart rate variability in normal sleeping full-term and preterm neonates. Early Hum Dev. 1992 Feb;28(2):169–183. doi: 10.1016/0378-3782(92)90111-s. [DOI] [PubMed] [Google Scholar]
  4. Fleisher L. A., Dipietro J. A., Johnson T. R., Pincus S. Complementary and non-coincident increases in heart rate variability and irregularity during fetal development. Clin Sci (Lond) 1997 Apr;92(4):345–349. doi: 10.1042/cs0920345. [DOI] [PubMed] [Google Scholar]
  5. Fox N. A. Maturation of autonomic control in preterm infants. Dev Psychobiol. 1983 Nov;16(6):495–504. doi: 10.1002/dev.420160605. [DOI] [PubMed] [Google Scholar]
  6. Francis D. J., Fletcher J. M., Stuebing K. K., Davidson K. C., Thompson N. M. Analysis of change: modeling individual growth. J Consult Clin Psychol. 1991 Feb;59(1):27–37. doi: 10.1037//0022-006x.59.1.27. [DOI] [PubMed] [Google Scholar]
  7. Giddens D. P., Kitney R. I. Neonatal heart rate variability and its relation to respiration. J Theor Biol. 1985 Apr 21;113(4):759–780. doi: 10.1016/s0022-5193(85)80192-2. [DOI] [PubMed] [Google Scholar]
  8. Jenkins J. G., Reid M. M., McClure B. G. Study of heart rate variability in sick newborn infants. Acta Paediatr Scand. 1980 May;69(3):393–396. doi: 10.1111/j.1651-2227.1980.tb07098.x. [DOI] [PubMed] [Google Scholar]
  9. Kamath M. V., Fallen E. L. Power spectral analysis of heart rate variability: a noninvasive signature of cardiac autonomic function. Crit Rev Biomed Eng. 1993;21(3):245–311. [PubMed] [Google Scholar]
  10. Massin M. M., Withofs N., Maeyns K., Ravet F. The influence of fetal and postnatal growth on heart rate variability in young infants. Cardiology. 2001;95(2):80–83. doi: 10.1159/000047350. [DOI] [PubMed] [Google Scholar]
  11. Porges S. W. Cardiac vagal tone: a physiological index of stress. Neurosci Biobehav Rev. 1995 Summer;19(2):225–233. doi: 10.1016/0149-7634(94)00066-a. [DOI] [PubMed] [Google Scholar]
  12. Sahni R., Schulze K. F., Kashyap S., Ohira-Kist K., Fifer W. P., Myers M. M. Maturational changes in heart rate and heart rate variability in low birth weight infants. Dev Psychobiol. 2000 Sep;37(2):73–81. doi: 10.1002/1098-2302(200009)37:2<73::aid-dev2>3.0.co;2-c. [DOI] [PubMed] [Google Scholar]
  13. Smith Sandra L., Doig Alexa K., Dudley William N. Characteristics of heart period variability in intubated very low birth weight infants with respiratory disease. Biol Neonate. 2004 Aug 3;86(4):269–274. doi: 10.1159/000080053. [DOI] [PubMed] [Google Scholar]
  14. Smith Sandra Lee. Heart period variability of intubated very-low-birth-weight infants during incubator care and maternal holding. Am J Crit Care. 2003 Jan;12(1):54–64. [PubMed] [Google Scholar]
  15. Van Leeuwen P., Lange S., Bettermann H., Grönemeyer D., Hatzmann W. Fetal heart rate variability and complexity in the course of pregnancy. Early Hum Dev. 1999 Apr;54(3):259–269. doi: 10.1016/s0378-3782(98)00102-9. [DOI] [PubMed] [Google Scholar]
  16. Veerappan S., Rosen H., Craelius W., Curcie D., Hiatt M., Hegyi T. Spectral analysis of heart rate variability in premature infants with feeding bradycardia. Pediatr Res. 2000 May;47(5):659–662. doi: 10.1203/00006450-200005000-00017. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood. Fetal and Neonatal Edition are provided here courtesy of BMJ Publishing Group

RESOURCES