Skip to main content
Archives of Disease in Childhood. Fetal and Neonatal Edition logoLink to Archives of Disease in Childhood. Fetal and Neonatal Edition
. 2005 Nov;90(6):F489–F493. doi: 10.1136/adc.2005.073908

Neonatal cranial ultrasound versus MRI and neurodevelopmental outcome at school age in children born preterm

K Rademaker, C Uiterwaal, F Beek, I C van Haastert, A Lieftink, F Groenendaal, D Grobbee, L S de Vries
PMCID: PMC1721983  PMID: 15956095

Abstract

Aim: To examine the correlation between neonatal cranial ultrasound and school age magnetic resonance imaging (MRI) and neurodevelopmental outcome.

Methods: In a prospective 2 year cohort study, 221 children (gestational age ⩽32 weeks and/or birth weight ⩽1500 g) participated at a median age of 8.1 years (inclusion percentage 78%). Conventional MRI, IQ (subtests of the WISC), and motor performance (Movement Assessment Battery for Children) at school age were primary outcome measurements.

Results: Overall, there was poor correspondence between ultrasound group classifications and MRI group classifications, except for the severe group (over 70% agreement). There was only a 1% chance of the children with a normal cranial ultrasound having a major lesion on MRI. Mean IQ (standard deviation) was significantly lower in children with major ultrasound or MRI lesions, but was also lower in children with minor lesions on MRI compared to children with a normal MRI (91±16, 100±13, 104±13 for major lesions, minor lesions, and normal MRI, respectively). Median total impairment score (TIS) was significantly higher in children with major lesions on ultrasound or MRI as well as in children with minor lesions on MRI (TIS 4.0 and 6.25 for normal and minor lesions on MRI, respectively; p<0.0001).

Conclusions: A normal neonatal cranial ultrasound excluded a severe lesion on MRI in 99% of cases. MRI correlated more strongly with mean IQ and median TIS than ultrasound. Subtle white matter lesions are better detected with MRI which could explain the stronger correlation of MRI with IQ and motor performance.

Full Text

The Full Text of this article is available as a PDF (73.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abernethy L. J., Palaniappan M., Cooke R. W. I. Quantitative magnetic resonance imaging of the brain in survivors of very low birth weight. Arch Dis Child. 2002 Oct;87(4):279–283. doi: 10.1136/adc.87.4.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abernethy Laurence J., Cooke Richard W. I., Foulder-Hughes Lynda. Caudate and hippocampal volumes, intelligence, and motor impairment in 7-year-old children who were born preterm. Pediatr Res. 2004 Feb 5;55(5):884–893. doi: 10.1203/01.PDR.0000117843.21534.49. [DOI] [PubMed] [Google Scholar]
  3. Childs A. M., Cornette L., Ramenghi L. A., Tanner S. F., Arthur R. J., Martinez D., Levene M. I. Magnetic resonance and cranial ultrasound characteristics of periventricular white matter abnormalities in newborn infants. Clin Radiol. 2001 Aug;56(8):647–655. doi: 10.1053/crad.2001.0754. [DOI] [PubMed] [Google Scholar]
  4. Cooke R. W., Abernethy L. J. Cranial magnetic resonance imaging and school performance in very low birth weight infants in adolescence. Arch Dis Child Fetal Neonatal Ed. 1999 Sep;81(2):F116–F121. doi: 10.1136/fn.81.2.f116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Counsell Serena J., Allsop Joanna M., Harrison Michael C., Larkman David J., Kennea Nigel L., Kapellou Olga, Cowan Frances M., Hajnal Joseph V., Edwards A. David, Rutherford Mary A. Diffusion-weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics. 2003 Jul;112(1 Pt 1):1–7. doi: 10.1542/peds.112.1.1. [DOI] [PubMed] [Google Scholar]
  6. Croce R. V., Horvat M., McCarthy E. Reliability and concurrent validity of the movement assessment battery for children. Percept Mot Skills. 2001 Aug;93(1):275–280. doi: 10.2466/pms.2001.93.1.275. [DOI] [PubMed] [Google Scholar]
  7. De Vries Linda S., Van Haastert Inge-Lot C., Rademaker Karin J., Koopman Corine, Groenendaal Floris. Ultrasound abnormalities preceding cerebral palsy in high-risk preterm infants. J Pediatr. 2004 Jun;144(6):815–820. doi: 10.1016/j.jpeds.2004.03.034. [DOI] [PubMed] [Google Scholar]
  8. Debillon T., N'Guyen S., Muet A., Quere M. P., Moussaly F., Roze J. C. Limitations of ultrasonography for diagnosing white matter damage in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2003 Jul;88(4):F275–F279. doi: 10.1136/fn.88.4.F275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hagberg B., Hagberg G., Olow I. The changing panorama of cerebral palsy in Sweden 1954-1970. I. Analysis of the general changes. Acta Paediatr Scand. 1975 Mar;64(2):187–192. doi: 10.1111/j.1651-2227.1975.tb03820.x. [DOI] [PubMed] [Google Scholar]
  10. Inder Terrie E., Anderson Nigel J., Spencer Carole, Wells Scott, Volpe Joseph J. White matter injury in the premature infant: a comparison between serial cranial sonographic and MR findings at term. AJNR Am J Neuroradiol. 2003 May;24(5):805–809. [PMC free article] [PubMed] [Google Scholar]
  11. Kuban K., Sanocka U., Leviton A., Allred E. N., Pagano M., Dammann O., Share J., Rosenfeld D., Abiri M., DiSalvo D. White matter disorders of prematurity: association with intraventricular hemorrhage and ventriculomegaly. The Developmental Epidemiology Network. J Pediatr. 1999 May;134(5):539–546. doi: 10.1016/s0022-3476(99)70237-4. [DOI] [PubMed] [Google Scholar]
  12. Maalouf E. F., Duggan P. J., Counsell S. J., Rutherford M. A., Cowan F., Azzopardi D., Edwards A. D. Comparison of findings on cranial ultrasound and magnetic resonance imaging in preterm infants. Pediatrics. 2001 Apr;107(4):719–727. doi: 10.1542/peds.107.4.719. [DOI] [PubMed] [Google Scholar]
  13. Miller Steven P., Cozzio Camilla Ceppi, Goldstein Ruth B., Ferriero Donna M., Partridge J. Colin, Vigneron Daniel B., Barkovich A. James. Comparing the diagnosis of white matter injury in premature newborns with serial MR imaging and transfontanel ultrasonography findings. AJNR Am J Neuroradiol. 2003 Sep;24(8):1661–1669. [PMC free article] [PubMed] [Google Scholar]
  14. Nagy Zoltan, Westerberg Helena, Skare Stefan, Andersson Jesper L., Lilja Anders, Flodmark Olof, Fernell Elisabeth, Holmberg Kirsten, Bohm Birgitta, Forssberg Hans. Preterm children have disturbances of white matter at 11 years of age as shown by diffusion tensor imaging. Pediatr Res. 2003 Aug 6;54(5):672–679. doi: 10.1203/01.PDR.0000084083.71422.16. [DOI] [PubMed] [Google Scholar]
  15. Nosarti Chiara, Al-Asady Mazin H. S., Frangou Sophia, Stewart Ann L., Rifkin Larry, Murray Robin M. Adolescents who were born very preterm have decreased brain volumes. Brain. 2002 Jul;125(Pt 7):1616–1623. doi: 10.1093/brain/awf157. [DOI] [PubMed] [Google Scholar]
  16. Papile L. A., Burstein J., Burstein R., Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr. 1978 Apr;92(4):529–534. doi: 10.1016/s0022-3476(78)80282-0. [DOI] [PubMed] [Google Scholar]
  17. Pierrat V., Duquennoy C., van Haastert I. C., Ernst M., Guilley N., de Vries L. S. Ultrasound diagnosis and neurodevelopmental outcome of localised and extensive cystic periventricular leucomalacia. Arch Dis Child Fetal Neonatal Ed. 2001 May;84(3):F151–F156. doi: 10.1136/fn.84.3.F151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Robertson N. J., Wyatt J. S. The magnetic resonance revolution in brain imaging: impact on neonatal intensive care. Arch Dis Child Fetal Neonatal Ed. 2004 May;89(3):F193–F197. doi: 10.1136/adc.2003.027334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Roelants-van Rijn A. M., Groenendaal F., Beek F. J., Eken P., van Haastert I. C., de Vries L. S. Parenchymal brain injury in the preterm infant: comparison of cranial ultrasound, MRI and neurodevelopmental outcome. Neuropediatrics. 2001 Apr;32(2):80–89. doi: 10.1055/s-2001-13875. [DOI] [PubMed] [Google Scholar]
  20. Santhouse A. M., Ffytche D. H., Howard R. J., Williams S. C. R., Stewart A. L., Rooney M., Wyatt J. S., Rifkin L., Murray R. M. The functional significance of perinatal corpus callosum damage: an fMRI study in young adults. Brain. 2002 Aug;125(Pt 8):1782–1792. doi: 10.1093/brain/awf174. [DOI] [PubMed] [Google Scholar]
  21. Skranes J. S., Nilsen G., Smevik O., Vik T., Brubakk A. M. Cerebral MRI of very low birth weight children at 6 years of age compared with the findings at 1 year. Pediatr Radiol. 1998 Jun;28(6):471–475. doi: 10.1007/s002470050387. [DOI] [PubMed] [Google Scholar]
  22. Stewart A. L., Rifkin L., Amess P. N., Kirkbride V., Townsend J. P., Miller D. H., Lewis S. W., Kingsley D. P., Moseley I. F., Foster O. Brain structure and neurocognitive and behavioural function in adolescents who were born very preterm. Lancet. 1999 May 15;353(9165):1653–1657. doi: 10.1016/s0140-6736(98)07130-x. [DOI] [PubMed] [Google Scholar]
  23. Valkama A. M., Päkkö E. L., Vainionpä L. K., Lanning F. P., Ilkko E. A., Koivisto M. E. Magnetic resonance imaging at term and neuromotor outcome in preterm infants. Acta Paediatr. 2000 Mar;89(3):348–355. [PubMed] [Google Scholar]
  24. Volpe Joseph J. Cerebral white matter injury of the premature infant-more common than you think. Pediatrics. 2003 Jul;112(1 Pt 1):176–180. doi: 10.1542/peds.112.1.176. [DOI] [PubMed] [Google Scholar]
  25. de Vries L. S., Eken P., Beek E., Groenendaal F., Meiners L. C. The posterior fontanelle: a neglected acoustic window. Neuropediatrics. 1996 Apr;27(2):101–104. doi: 10.1055/s-2007-973757. [DOI] [PubMed] [Google Scholar]
  26. de Vries L. S., Eken P., Dubowitz L. M. The spectrum of leukomalacia using cranial ultrasound. Behav Brain Res. 1992 Jul 31;49(1):1–6. doi: 10.1016/s0166-4328(05)80189-5. [DOI] [PubMed] [Google Scholar]
  27. de Vries L. S., Rademaker K. J., Groenendaal F., Eken P., van Haastert I. C., Vandertop W. P., Gooskens R., Meiners L. C. Correlation between neonatal cranial ultrasound, MRI in infancy and neurodevelopmental outcome in infants with a large intraventricular haemorrhage with or without unilateral parenchymal involvement. Neuropediatrics. 1998 Aug;29(4):180–188. doi: 10.1055/s-2007-973558. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood. Fetal and Neonatal Edition are provided here courtesy of BMJ Publishing Group

RESOURCES