Skip to main content
The British Journal of Ophthalmology logoLink to The British Journal of Ophthalmology
. 1997 Jan;81(1):58–60. doi: 10.1136/bjo.81.1.58

Detection of eicosanoids in epiretinal membranes of patients suffering from proliferative vitreoretinal diseases

A Augustin 1, F Grus 1, F Koch 1, M Spitznas 1
PMCID: PMC1722006  PMID: 9135410

Abstract

AIM—Arachidonic acid is metabolised via lipoxygenase to 15-HETE (15-hydroxyeicosatetraenoic acid) and 15-HPETE (15-hydroperoxyeicosatetraenoic acid), which are believed to influence proliferation in tissue culture. 15-HETE is the reduction product of 15-HPETE. Cell proliferation is believed to be decreased by 15-HPETE and increased by 15-HETE. The aim of this study was to investigate epiretinal membranes for the presence of these lipoxygenase products and to compare membranes from different disease processes.
METHODS—Epiretinal membranes of 15 patients suffering from proliferative vitreoretinopathy (PVR, n=7) and proliferative diabetic retinopathy (PDR; n=8) were removed during vitrectomy and analysed by means of thin layer chromatography. The plates were evaluated by digital image analysis.
RESULTS—Both 15-HETE and 15-HPETE were identified in membranes from eyes of patients with PVR and PDR with HETE values significantly higher (p<0.05) than HPETE values (HETE/HPETE ratio = 5.2).
CONCLUSION—This study demonstrates that eicosanoids are present in the epiretinal membrane tissue of patients with PVR and PDR. Considering that HETE increases cell proliferation while HPETE inhibits it, it is conceivable that eicosanoids are an additional factor contributing to the regulation of membrane growth in proliferative retinal disorders. Thus, inhibition of lipoxygenase could be a therapeutic approach in these diseases.



Full Text

The Full Text of this article is available as a PDF (111.4 KB).

Figure 1  .

Figure 1  

Photograph and densitograph of a PVR membrane with 15-HETE (HE) and 15-HPETE (HP).

Figure 2  .

Figure 2  

15-HETE and 15-HPETE values in epiretinal membranes from patients with proliferative diabetic retinopathy (PDR) and proliferative vitreoretinopathy (PVR). The HETE values were significantly higher (p <0.05) than HPETE values (HETE/HPETE ratio = 5.2).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiello L. P., Avery R. L., Arrigg P. G., Keyt B. A., Jampel H. D., Shah S. T., Pasquale L. R., Thieme H., Iwamoto M. A., Park J. E. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994 Dec 1;331(22):1480–1487. doi: 10.1056/NEJM199412013312203. [DOI] [PubMed] [Google Scholar]
  2. Augustin A. J., Breipohl W., Böker T., Lutz J., Spitznas M. Increased lipid peroxide levels and myeloperoxidase activity in the vitreous of patients suffering from proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 1993 Nov;231(11):647–650. doi: 10.1007/BF00921959. [DOI] [PubMed] [Google Scholar]
  3. Blumenkranz M. S., Ophir A., Claflin A. J., Hajek A. Fluorouracil for the treatment of massive periretinal proliferation. Am J Ophthalmol. 1982 Oct;94(4):458–467. doi: 10.1016/0002-9394(82)90239-2. [DOI] [PubMed] [Google Scholar]
  4. Böker T., Augustin A. J., Breipohl W., Spitznas M., Lutz J. Increased lipid peroxide level and myeloperoxidase activity in the vitreous of patients suffering from proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol. 1994 Nov;232(11):652–656. doi: 10.1007/BF00171379. [DOI] [PubMed] [Google Scholar]
  5. Calzada C., Rice-Evans C. Ruptured erythrocytes inhibit the oxidation of membranes by 15-hydroperoxy-eicosatetraenoic acid. FEBS Lett. 1993 Aug 23;329(1-2):111–115. doi: 10.1016/0014-5793(93)80204-8. [DOI] [PubMed] [Google Scholar]
  6. Esser P., Heimann K., Wiedemann P. Macrophages in proliferative vitreoretinopathy and proliferative diabetic retinopathy: differentiation of subpopulations. Br J Ophthalmol. 1993 Nov;77(11):731–733. doi: 10.1136/bjo.77.11.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fukushima M., Kato T., Ueda R., Ota K., Narumiya S., Hayaishi O. Prostaglandin D2, a potential antineoplastic agent. Biochem Biophys Res Commun. 1982 Apr 14;105(3):956–964. doi: 10.1016/0006-291x(82)91063-4. [DOI] [PubMed] [Google Scholar]
  8. Heffernan J. T., Futterman S., Kalina R. E. Dexamethasone inhibition of experimental endothelial cell proliferation in retinal venules. Invest Ophthalmol Vis Sci. 1978 Jun;17(6):565–568. [PubMed] [Google Scholar]
  9. Hiscott P. S., Grierson I., McLeod D. Retinal pigment epithelial cells in epiretinal membranes: an immunohistochemical study. Br J Ophthalmol. 1984 Oct;68(10):708–715. doi: 10.1136/bjo.68.10.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Honn K. V., Timár J., Rozhin J., Bazaz R., Sameni M., Ziegler G., Sloane B. F. A lipoxygenase metabolite, 12-(S)-HETE, stimulates protein kinase C-mediated release of cathepsin B from malignant cells. Exp Cell Res. 1994 Sep;214(1):120–130. doi: 10.1006/excr.1994.1240. [DOI] [PubMed] [Google Scholar]
  11. Hui Y. N., Goodnight R., Sorgente N., Ryan S. J. Fibrovascular proliferation and retinal detachment after intravitreal injection of activated macrophages in the rabbit eye. Am J Ophthalmol. 1989 Aug 15;108(2):176–184. doi: 10.1016/0002-9394(89)90014-7. [DOI] [PubMed] [Google Scholar]
  12. Jampol L. M., Ebroon D. A., Goldbaum M. H. Peripheral proliferative retinopathies: an update on angiogenesis, etiologies and management. Surv Ophthalmol. 1994 May-Jun;38(6):519–540. doi: 10.1016/0039-6257(94)90146-5. [DOI] [PubMed] [Google Scholar]
  13. Jerdan J. A., Pepose J. S., Michels R. G., Hayashi H., de Bustros S., Sebag M., Glaser B. M. Proliferative vitreoretinopathy membranes. An immunohistochemical study. Ophthalmology. 1989 Jun;96(6):801–810. doi: 10.1016/s0161-6420(89)32818-1. [DOI] [PubMed] [Google Scholar]
  14. Kiran Kumar Y. V., Raghunathan A., Sailesh S., Prasad M., Vemuri M. C., Reddanna P. Differential effects of 15-HPETE and 15-HETE on BHK-21 cell proliferation and macromolecular composition. Biochim Biophys Acta. 1993 Mar 17;1167(1):102–108. doi: 10.1016/0005-2760(93)90223-v. [DOI] [PubMed] [Google Scholar]
  15. Leibovich S. J., Wiseman D. M. Macrophages, wound repair and angiogenesis. Prog Clin Biol Res. 1988;266:131–145. [PubMed] [Google Scholar]
  16. Liu B., Marnett L. J., Chaudhary A., Ji C., Blair I. A., Johnson C. R., Diglio C. A., Honn K. V. Biosynthesis of 12(S)-hydroxyeicosatetraenoic acid by B16 amelanotic melanoma cells is a determinant of their metastatic potential. Lab Invest. 1994 Mar;70(3):314–323. [PubMed] [Google Scholar]
  17. Matsumoto R., Naka M., Omawari N., Fujitani B., Aishita H. Effects of OP-41483.alpha-CD, a stable prostacyclin analog, on cultured endothelial cell dysfunction caused by 15(S)-hydroperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE) in vitro. Life Sci. 1993;52(15):1257–1264. [PubMed] [Google Scholar]
  18. Naveh N., Weissman C. Corticosteroid treatment of laser retinal damage affects prostaglandin E2 response. Invest Ophthalmol Vis Sci. 1990 Jan;31(1):9–13. [PubMed] [Google Scholar]
  19. Onoda J. M., Kantak S. S., Piechocki M. P., Awad W., Chea R., Liu B., Honn K. V. Inhibition of radiation-enhanced expression of integrin and metastatic potential in B16 melanoma cells by a lipoxygenase inhibitor. Radiat Res. 1994 Dec;140(3):410–418. [PubMed] [Google Scholar]
  20. Postoak D., Nystuen L., King L., Ueno M., Beckman B. S. 15-Lipoxygenase products of arachidonate play a role in proliferation of transformed erythroid cells. Am J Physiol. 1990 Dec;259(6 Pt 1):C849–C853. doi: 10.1152/ajpcell.1990.259.6.C849. [DOI] [PubMed] [Google Scholar]
  21. Ralph R. K., Wojcik S. Inhibitors of lipoxygenase have antiproliferative effects on P815 murine mastocytoma cells. Cancer Lett. 1990 Mar;49(3):181–185. doi: 10.1016/0304-3835(90)90156-r. [DOI] [PubMed] [Google Scholar]
  22. Sandstrom P. A., Tebbey P. W., Van Cleave S., Buttke T. M. Lipid hydroperoxides induce apoptosis in T cells displaying a HIV-associated glutathione peroxidase deficiency. J Biol Chem. 1994 Jan 14;269(2):798–801. [PubMed] [Google Scholar]
  23. Tang S., Scheiffarth O. F., Thurau S. R., Wildner G. Cells of the immune system and their cytokines in epiretinal membranes and in the vitreous of patients with proliferative diabetic retinopathy. Ophthalmic Res. 1993;25(3):177–185. doi: 10.1159/000267287. [DOI] [PubMed] [Google Scholar]
  24. WOLTER J. R. The macrophages of the human vitreous body. Am J Ophthalmol. 1960 May;49:1185–1193. doi: 10.1016/0002-9394(60)91634-2. [DOI] [PubMed] [Google Scholar]
  25. Weller M., Heimann K., Wiedemann P. The pathogenesis of vitreoretinal proliferation and traction: a working hypothesis. Med Hypotheses. 1990 Feb;31(2):157–159. doi: 10.1016/0306-9877(90)90012-4. [DOI] [PubMed] [Google Scholar]

Articles from The British Journal of Ophthalmology are provided here courtesy of BMJ Publishing Group

RESOURCES