Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1988 Apr;32(4):513–517. doi: 10.1128/aac.32.4.513

Effect of temperature on inoculum as a potential source of error in agar dilution plate count bactericidal measurements.

B F Woolfrey 1, M E Gresser-Burns 1, R T Lally 1
PMCID: PMC172212  PMID: 3377463

Abstract

The effect of increased temperature on Staphylococcus aureus during the inoculation step of the agar dilution plate count method was investigated as a possible cause of artificially high persister counts. For some isolates, exposure of the inoculum to increased temperature resulted in higher persister counts and diminution or loss of the paradoxical effect. The persister patterns for three representative S. aureus isolates are presented to illustrate the strain- and temperature-dependent nature of the phenomenon. For any isolate, the net effect appears to be caused by an interplay of temperature-induced inoculum loss and temperature-induced cell division cycle blockage. A modification of the agar dilution plate count inoculation step to circumvent such problems is described.

Full text

PDF
513

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed N., Rowbury R. J. Temperature-sensitive cell division component in a mutant of Salmonella typhimurium. J Gen Microbiol. 1971 Jul;67(1):107–115. doi: 10.1099/00221287-67-1-107. [DOI] [PubMed] [Google Scholar]
  2. Allen J. S., Filip C. C., Gustafson R. A., Allen R. G., Walker J. R. Regulation of bacterial cell division: genetic and phenotypic analysis of temperature-sensitive, multinucleate, filament-forming mutants of Escherichia. J Bacteriol. 1974 Mar;117(3):978–986. doi: 10.1128/jb.117.3.978-986.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boylan R. J., Mendelson N. H. Initial characterization of a temperature-sensitive rod--mutant of Bacillus subtilis. J Bacteriol. 1969 Dec;100(3):1316–1321. doi: 10.1128/jb.100.3.1316-1321.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Breakefield X. O., Landman O. E. Temperature-sensitive divisionless mutant of Bacillus subtilis defective in the initiation of septation. J Bacteriol. 1973 Feb;113(2):985–998. doi: 10.1128/jb.113.2.985-998.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Canepari P., Lléo M. M., Fontana R., Satta G., Shockman G. D., Daneo-Moore L. Division of temperature-sensitive Streptococcus faecium mutants after return to the permissive temperature. J Bacteriol. 1984 Oct;160(1):427–429. doi: 10.1128/jb.160.1.427-429.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Canepari P., Lléo M. M., Satta G., Fontana R., Shockman G. D., Daneo-Moore L. Division blocks in temperature-sensitive mutants of Streptococcus faecium (S. faecalis ATCC 9790). J Bacteriol. 1983 Dec;156(3):1046–1051. doi: 10.1128/jb.156.3.1046-1051.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Copeland J. C., Marmur J. Identification of conserved genetic functions in Bacillus by use of temperature-sensitive mutants. Bacteriol Rev. 1968 Dec;32(4 Pt 1):302–312. [PMC free article] [PubMed] [Google Scholar]
  8. GUNNISON J. B., FRAHER M. A., JAWETZ E. PERSISTENCE OF STAPHYLOCOCCUS AUREUS IN PENICILLIN IN VITRO. J Gen Microbiol. 1964 May;35:335–349. doi: 10.1099/00221287-35-2-335. [DOI] [PubMed] [Google Scholar]
  9. Garrod L. P. Action of Penicillin on Bacteria. Br Med J. 1945 Jan 27;1(4386):107–110. doi: 10.1136/bmj.1.4386.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Greenwood D. Mucopeptide hydrolases and bacterial "persisters". Lancet. 1972 Sep 2;2(7775):465–466. doi: 10.1016/s0140-6736(72)91858-2. [DOI] [PubMed] [Google Scholar]
  11. Hinks E. T., Daneo-Moore L., Braverman S. Temperature effects on minimum inhibitory and bactericidal concentrations of cell wall antibiotics in Streptococcus faecalis. Antimicrob Agents Chemother. 1977 Aug;12(2):281–283. doi: 10.1128/aac.12.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hirota Y., Ryter A., Jacob F. Thermosensitive mutants of E. coli affected in the processes of DNA synthesis and cellular division. Cold Spring Harb Symp Quant Biol. 1968;33:677–693. doi: 10.1101/sqb.1968.033.01.077. [DOI] [PubMed] [Google Scholar]
  13. Kohiyama M., Cousin D., Ryter A., Jacob F. Mutants thermosensibles d'Escherichia coli K 12. I. Isolement et caractérisation rapide. Ann Inst Pasteur (Paris) 1966 Apr;110(4):465–486. [PubMed] [Google Scholar]
  14. Lee S. W., Foley E. J., Epstein J. A. Mode of Action of Penicillin: I. Bacterial Growth and Penicillin Activity-Staphylococcus aureus FDA. J Bacteriol. 1944 Oct;48(4):393–399. doi: 10.1128/jb.48.4.393-399.1944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McDERMOTT W. Microbial persistence. Yale J Biol Med. 1958 Feb;30(4):257–291. [PMC free article] [PubMed] [Google Scholar]
  16. Mendelson N. H., Gross J. D. Characterization of a temperature-sensitive mutant of Bacillus subtilis defective in deoxyribonucleic acid replication. J Bacteriol. 1967 Nov;94(5):1603–1608. doi: 10.1128/jb.94.5.1603-1608.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nagai K., Kaneko H., Tamura G. Thermosensitive mutant of Escherichia coli requiring new protein synthesis to recover cellular division ability. Biochem Biophys Res Commun. 1971 Feb 19;42(4):669–675. doi: 10.1016/0006-291x(71)90540-7. [DOI] [PubMed] [Google Scholar]
  18. Reeve J. N., Clark D. J. Cell division of Escherichia coli BUG-6: effect of varying the length of growth at the nonpermissive temperature. J Bacteriol. 1972 Apr;110(1):117–121. doi: 10.1128/jb.110.1.117-121.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reeve J. N., Groves D. J., Clark D. J. Regulation of Cell Division in Escherichia coli: Characterization of Temperature-Sensitive Division Mutants. J Bacteriol. 1970 Dec;104(3):1052–1064. doi: 10.1128/jb.104.3.1052-1064.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ricard M., Hirota Y. Effet des sels sur le processus de division cellulaire d'E. coli. C R Acad Sci Hebd Seances Acad Sci D. 1969 Mar 3;268(9):1335–1338. [PubMed] [Google Scholar]
  21. Ricard M., Hirota Y. Process of cellular division in Escherichia coli: physiological study on thermosensitive mutants defective in cell division. J Bacteriol. 1973 Oct;116(1):314–322. doi: 10.1128/jb.116.1.314-322.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tuomanen E., Cozens R., Tosch W., Zak O., Tomasz A. The rate of killing of Escherichia coli by beta-lactam antibiotics is strictly proportional to the rate of bacterial growth. J Gen Microbiol. 1986 May;132(5):1297–1304. doi: 10.1099/00221287-132-5-1297. [DOI] [PubMed] [Google Scholar]
  23. VAN DE PUTTE P., VAN DILLEWIJN, ROERSCH A. THE SELECTION OF MUTANTS OF ESCHERICHIA COLI WITH IMPAIRED CELL DIVISION AT ELEVATED TEMPERATURE. Mutat Res. 1964 Jul;106:121–128. doi: 10.1016/0027-5107(64)90014-4. [DOI] [PubMed] [Google Scholar]
  24. Woolfrey B. F., Lally R. T., Ederer M. N. Evaluation of oxacillin tolerance in Staphylococcus aureus by a novel method. Antimicrob Agents Chemother. 1985 Sep;28(3):381–388. doi: 10.1128/aac.28.3.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Woolfrey B. F., Lally R. T., Ederer M. N., Gresser-Burns M. Oxacillin killing curve patterns of Staphylococcus aureus isolates by agar dilution plate count method. Antimicrob Agents Chemother. 1987 Jan;31(1):16–20. doi: 10.1128/aac.31.1.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Woolfrey B. F., Lally R. T., Ederer M. N. Influence of technical factor variations during inoculum preparation on the agar dilution plate-count method for quantitation of Staphylococcus aureus oxacillin persisters. Antimicrob Agents Chemother. 1986 Nov;30(5):792–793. doi: 10.1128/aac.30.5.792. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES