Skip to main content
The British Journal of Ophthalmology logoLink to The British Journal of Ophthalmology
. 1997 Jun;81(6):493–496. doi: 10.1136/bjo.81.6.493

Microsatellite instability and loss of heterozygosity in human pterygia

D Spandidos 1, G Sourvinos 1, H Kiaris 1, J Tsamparlakis 1
PMCID: PMC1722223  PMID: 9274415

Abstract

AIMS/BACKGROUND—Pterygium is a common benign lesion of the corneo-conjunctival limbus. Although environmental factors, such as ultraviolet irradiation, have been suggested as the main causative factor in the development of the disease, however, the aetiopathology of pterygium remains obscure. In this study the possibility of detecting genetic alterations in the microsatellite DNA of the pterygium was investigated.
METHODS—Fifteen specimens were assessed for loss of heterozygosity (LOH) and microsatellite instability (MI) by seven microsatellite markers on four chromosomal arms.
RESULTS—Nine (60%) pterygia exhibited genetic alterations. Eight specimens (53%) exhibited LOH, while two specimens (13%) MI in at least one marker. 17q11.2-q21 is a commonly deleted region, as the frequency of LOH at this region is significantly high (47%).
CONCLUSION—This finding indicates the existence of tumour suppressor genes in this region implicated in the disease without excluding the presence of other tumour suppressor genes in the other chromosomal regions that were examined. MI was apparent in only a few specimens but it is indeed a detectable phenomenon, suggesting that decreased fidelity in DNA replication and repair may be associated with the development of pterygium. Detection of LOH and MI, two events taking place in tumour cells or in premalignant cells, constitutes strong evidence that there must be transformed cells in the pterygial tissue and it should be considered to be a neoplastic benign lesion.



Full Text

The Full Text of this article is available as a PDF (104.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cameron M. E. Histology of pterygium: an electron microscopic study. Br J Ophthalmol. 1983 Sep;67(9):604–608. doi: 10.1136/bjo.67.9.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen J. K., Tsai R. J., Lin S. S. Fibroblasts isolated from human pterygia exhibit transformed cell characteristics. In Vitro Cell Dev Biol Anim. 1994 Apr;30A(4):243–248. doi: 10.1007/BF02632046. [DOI] [PubMed] [Google Scholar]
  3. Corominas M., Kamino H., Leon J., Pellicer A. Oncogene activation in human benign tumors of the skin (keratoacanthomas): is HRAS involved in differentiation as well as proliferation? Proc Natl Acad Sci U S A. 1989 Aug;86(16):6372–6376. doi: 10.1073/pnas.86.16.6372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coroneo M. T. Pterygium as an early indicator of ultraviolet insolation: a hypothesis. Br J Ophthalmol. 1993 Nov;77(11):734–739. doi: 10.1136/bjo.77.11.734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Field J. K., Kiaris H., Howard P., Vaughan E. D., Spandidos D. A., Jones A. S. Microsatellite instability in squamous cell carcinoma of the head and neck. Br J Cancer. 1995 May;71(5):1065–1069. doi: 10.1038/bjc.1995.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fong K. M., Kida Y., Zimmerman P. V., Ikenaga M., Smith P. J. Loss of heterozygosity frequently affects chromosome 17q in non-small cell lung cancer. Cancer Res. 1995 Oct 1;55(19):4268–4272. [PubMed] [Google Scholar]
  7. Fu Y. H., Pizzuti A., Fenwick R. G., Jr, King J., Rajnarayan S., Dunne P. W., Dubel J., Nasser G. A., Ashizawa T., de Jong P. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science. 1992 Mar 6;255(5049):1256–1258. doi: 10.1126/science.1546326. [DOI] [PubMed] [Google Scholar]
  8. Gao X., Zacharek A., Salkowski A., Grignon D. J., Sakr W., Porter A. T., Honn K. V. Loss of heterozygosity of the BRCA1 and other loci on chromosome 17q in human prostate cancer. Cancer Res. 1995 Mar 1;55(5):1002–1005. [PubMed] [Google Scholar]
  9. Godwin A. K., Vanderveer L., Schultz D. C., Lynch H. T., Altomare D. A., Buetow K. H., Daly M., Getts L. A., Masny A., Rosenblum N. A common region of deletion on chromosome 17q in both sporadic and familial epithelial ovarian tumors distal to BRCA1. Am J Hum Genet. 1994 Oct;55(4):666–677. [PMC free article] [PubMed] [Google Scholar]
  10. Kiaris H., Ergazaki M., Spandidos D. A. Instability at the H-ras minisatellite is associated with the spontaneous abortion of the embryo. Biochem Biophys Res Commun. 1995 Sep 25;214(3):788–792. doi: 10.1006/bbrc.1995.2355. [DOI] [PubMed] [Google Scholar]
  11. Kiaris H., Spanakis N., Ergazaki M., Sourvinos G., Spandidos D. A. Loss of heterozygosity at 9p and 17q in human laryngeal tumors. Cancer Lett. 1995 Oct 20;97(1):129–134. doi: 10.1016/0304-3835(95)03963-w. [DOI] [PubMed] [Google Scholar]
  12. Kiaris H., Spandidos D. A., Jones A. S., Vaughan E. D., Field J. K. Mutations, expression and genomic instability of the H-ras proto-oncogene in squamous cell carcinomas of the head and neck. Br J Cancer. 1995 Jul;72(1):123–128. doi: 10.1038/bjc.1995.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Knudson A. G., Jr Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971 Apr;68(4):820–823. doi: 10.1073/pnas.68.4.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Loeb L. A. Microsatellite instability: marker of a mutator phenotype in cancer. Cancer Res. 1994 Oct 1;54(19):5059–5063. [PubMed] [Google Scholar]
  15. Mori T., Aoki T., Matsubara T., Iida F., Du X., Nishihira T., Mori S., Nakamura Y. Frequent loss of heterozygosity in the region including BRCA1 on chromosome 17q in squamous cell carcinomas of the esophagus. Cancer Res. 1994 Apr 1;54(7):1638–1640. [PubMed] [Google Scholar]
  16. Parsons R., Li G. M., Longley M., Modrich P., Liu B., Berk T., Hamilton S. R., Kinzler K. W., Vogelstein B. Mismatch repair deficiency in phenotypically normal human cells. Science. 1995 May 5;268(5211):738–740. doi: 10.1126/science.7632227. [DOI] [PubMed] [Google Scholar]
  17. Pinkerton O. D., Hokama Y., Shigemura L. A. Immunologic basis for the pathogenesis of pterygium. Am J Ophthalmol. 1984 Aug 15;98(2):225–228. doi: 10.1016/0002-9394(87)90358-8. [DOI] [PubMed] [Google Scholar]
  18. Risinger J. I., Berchuck A., Kohler M. F., Watson P., Lynch H. T., Boyd J. Genetic instability of microsatellites in endometrial carcinoma. Cancer Res. 1993 Nov 1;53(21):5100–5103. [PubMed] [Google Scholar]
  19. Snell R. G., MacMillan J. C., Cheadle J. P., Fenton I., Lazarou L. P., Davies P., MacDonald M. E., Gusella J. F., Harper P. S., Shaw D. J. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nat Genet. 1993 Aug;4(4):393–397. doi: 10.1038/ng0893-393. [DOI] [PubMed] [Google Scholar]
  20. Spandidos D. A. A unified theory for the development of cancer. Biosci Rep. 1986 Aug;6(8):691–708. doi: 10.1007/BF01116536. [DOI] [PubMed] [Google Scholar]
  21. Spandidos D. A., Ergazaki M., Arvanitis D., Kiaris H. Microsatellite instability in human atherosclerotic plaques. Biochem Biophys Res Commun. 1996 Mar 7;220(1):137–140. doi: 10.1006/bbrc.1996.0370. [DOI] [PubMed] [Google Scholar]
  22. Suarez H. G., Daya-Grosjean L., Schlaifer D., Nardeux P., Renault G., Bos J. L., Sarasin A. Activated oncogenes in human skin tumors from a repair-deficient syndrome, xeroderma pigmentosum. Cancer Res. 1989 Mar 1;49(5):1223–1228. [PubMed] [Google Scholar]
  23. Yee C. J., Roodi N., Verrier C. S., Parl F. F. Microsatellite instability and loss of heterozygosity in breast cancer. Cancer Res. 1994 Apr 1;54(7):1641–1644. [PubMed] [Google Scholar]

Articles from The British Journal of Ophthalmology are provided here courtesy of BMJ Publishing Group

RESOURCES