Skip to main content
The British Journal of Ophthalmology logoLink to The British Journal of Ophthalmology
. 1998 Feb;82(2):162–167. doi: 10.1136/bjo.82.2.162

Effect of isovolaemic haemodilution on visual outcome in branch retinal vein occlusion

H Chen 1, J Wiek 1, A Gupta 1, A Luckie 1, E Kohner 1
PMCID: PMC1722474  PMID: 9613383

Abstract

AIMS—To assess the efficacy of isovolaemic haemodilution therapy (IHT) in the treatment of patients with branch retinal vein occlusion (BRVO).
METHODS—Patients presenting with BRVO between 1 July 1991 and 31 August 1993 were eligible for inclusion and randomised into treatment and control groups. Patients randomised to receive IHT were treated for 6 weeks with venesection and volume replacement using hydroxyethylstarch, a plasma expander. The target haematocrit was 35%. Follow up was for 1 year.
RESULTS—The baseline visual acuity of the two groups was similar at 0.74 and 0.75 logMAR units (Snellen 6/36), for the IHT and control groups, respectively. At 6 weeks, visual acuity in the IHT group had improved by 0.20 logMAR units (2 lines on the Bailey-Lovie chart) (p=0.0001). Vision was unchanged in the control group. At 1 year, the IHT group exhibited an improvement of 0.43 logMAR units. By comparison, the improvement in the control group at 1 year was significantly less at 0.17 logMAR units (p=0.03). The final visual acuity in the IHT and control groups was 0.30 (Snellen 6/12) and 0.60 (Snellen 6/24) logMAR units, respectively.
CONCLUSIONS—The results support the theory that IHT has a positive effect on the visual outcome in patients with BRVO.

 Keywords: branch retinal vein occlusion; haemodilution; laser treatment; macular oedema

Full Text

The Full Text of this article is available as a PDF (131.0 KB).

Figure 1  .

Figure 1  

Mean visual acuity. Each point shows the mean visual acuity (vertical bars, mean (SEM)) in both groups of patients from entry into the study to 1 year. The visual acuity is presented in logMAR units; a decreasing value indicates an improving visual acuity. The p value at which the difference between the two groups reaches statistical significance is shown.

Figure 2  .

Figure 2  

(A) Visual acuity at 6 weeks. This presents the visual acuity at entry into the study and at 6 weeks. Values on the diagonal line are those experiencing no change; those above the line improved and those below deteriorated. (B) Visual acuity at 1 year. This presents the visual acuity at entry into the study and at 1 year. Values on the diagonal line are those experiencing no change; those above the line improved and those below deteriorated.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashton N. Pathophysiology of retinal cotton-wool spots. Br Med Bull. 1970 May;26(2):143–150. doi: 10.1093/oxfordjournals.bmb.a070766. [DOI] [PubMed] [Google Scholar]
  2. Chabanel A., Glacet-Bernard A., Lelong F., Taccoen A., Coscas G., Samama M. M. Increased red blood cell aggregation in retinal vein occlusion. Br J Haematol. 1990 May;75(1):127–131. doi: 10.1111/j.1365-2141.1990.tb02628.x. [DOI] [PubMed] [Google Scholar]
  3. Clemett R. S. Retinal branch vein occlusion. Changes at the site of obstruction. Br J Ophthalmol. 1974 May;58(5):548–554. doi: 10.1136/bjo.58.5.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crowell J. W., Smith E. E. Determinant of the optimal hematocrit. J Appl Physiol. 1967 Mar;22(3):501–504. doi: 10.1152/jappl.1967.22.3.501. [DOI] [PubMed] [Google Scholar]
  5. Finkelstein D. Ischemic macular edema. Recognition and favorable natural history in branch vein occlusion. Arch Ophthalmol. 1992 Oct;110(10):1427–1434. doi: 10.1001/archopht.1992.01080220089028. [DOI] [PubMed] [Google Scholar]
  6. Hansen L. L., Danisevskis P., Arntz H. R., Hövener G., Wiederholt M. A randomised prospective study on treatment of central retinal vein occlusion by isovolaemic haemodilution and photocoagulation. Br J Ophthalmol. 1985 Feb;69(2):108–116. doi: 10.1136/bjo.69.2.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hansen L. L., Wiek J., Schade M., Müller-Stolzenburg N., Wiederholt M. Effect and compatibility of isovolaemic haemodilution in the treatment of ischaemic and non-ischaemic central retinal vein occlusion. Ophthalmologica. 1989;199(2-3):90–99. doi: 10.1159/000310023. [DOI] [PubMed] [Google Scholar]
  8. Hansen L. L., Wiek J., Wiederholt M. A randomised prospective study of treatment of non-ischaemic central retinal vein occlusion by isovolaemic haemodilution. Br J Ophthalmol. 1989 Nov;73(11):895–899. doi: 10.1136/bjo.73.11.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hockley D. J., Tripathi R. C., Ashton N. Experimental retinal branch vein occlusion in the monkey. Histopathological and ultrastructural studies. Trans Ophthalmol Soc U K. 1976 Jul;96(2):202–209. [PubMed] [Google Scholar]
  10. Hulse J. D., Yacobi A. Hetastarch: an overview of the colloid and its metabolism. Drug Intell Clin Pharm. 1983 May;17(5):334–341. doi: 10.1177/106002808301700503. [DOI] [PubMed] [Google Scholar]
  11. Janvrin S. B., Davies G., Greenhalgh R. M. Postoperative deep vein thrombosis caused by intravenous fluids during surgery. Br J Surg. 1980 Oct;67(10):690–693. doi: 10.1002/bjs.1800671004. [DOI] [PubMed] [Google Scholar]
  12. Jung F., Koscielny J., Mrowietz C., Wolf S., Kiesewetter H., Wenzel E. Einfluss der Hämodilution auf den systemischen und den Kapillarhämatokrit. Infusionstherapie. 1990 Oct;17(5):268–275. [PubMed] [Google Scholar]
  13. Kiraly J. F., 3rd, Feldmann J. E., Wheby M. S. Hazards of phlebotomy in polycythemic patients with cardiovascular disease. JAMA. 1976 Nov 1;236(18):2080–2081. [PubMed] [Google Scholar]
  14. Kohner E. M., Dollery C. T., Shakib M., Henkind P., Paterson J. W., De Oliveira L. N., Bulpitt C. J. Experimental retinal branch vein occlusion. Am J Ophthalmol. 1970 May;69(5):778–825. doi: 10.1016/0002-9394(70)93420-3. [DOI] [PubMed] [Google Scholar]
  15. Lipowsky H. H., Firrell J. C. Microvascular hemodynamics during systemic hemodilution and hemoconcentration. Am J Physiol. 1986 Jun;250(6 Pt 2):H908–H922. doi: 10.1152/ajpheart.1986.250.6.H908. [DOI] [PubMed] [Google Scholar]
  16. McGrath M. A., Wechsler F., Hunyor A. B., Penny R. Systemic factors contributory to retinal vein occlusion. Arch Intern Med. 1978 Feb;138(2):216–220. [PubMed] [Google Scholar]
  17. Mirhashemi S., Ertefai S., Messmer K., Intaglietta M. Model analysis of the enhancement of tissue oxygenation by hemodilution due to increased microvascular flow velocity. Microvasc Res. 1987 Nov;34(3):290–301. doi: 10.1016/0026-2862(87)90062-8. [DOI] [PubMed] [Google Scholar]
  18. Murphy J. R. The influence of pH and temperature on some physical properties of normal erythrocytes and erythrocytes from patients with hereditary spherocytosis. J Lab Clin Med. 1967 May;69(5):758–775. [PubMed] [Google Scholar]
  19. Orth D. H., Patz A. Retinal branch vein occlusion. Surv Ophthalmol. 1978 May-Jun;22(6):357–376. doi: 10.1016/0039-6257(78)90132-7. [DOI] [PubMed] [Google Scholar]
  20. Peduzzi M., Debbia A., Guerrieri F., Bolzani R. Abnormal blood rheology in retinal vein occlusion. A preliminary report. Graefes Arch Clin Exp Ophthalmol. 1986;224(1):83–85. doi: 10.1007/BF02144143. [DOI] [PubMed] [Google Scholar]
  21. Pournaras C. J., Tsacopoulos M., Strommer K., Gilodi N., Leuenberger P. M. Experimental retinal branch vein occlusion in miniature pigs induces local tissue hypoxia and vasoproliferative microangiopathy. Ophthalmology. 1990 Oct;97(10):1321–1328. doi: 10.1016/s0161-6420(90)32415-6. [DOI] [PubMed] [Google Scholar]
  22. Ring C. P., Pearson T. C., Sanders M. D., Wetherley-Mein G. Viscosity and retinal vein thrombosis. Br J Ophthalmol. 1976 Jun;60(6):397–410. doi: 10.1136/bjo.60.6.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Scharf J., von Kummer R., Back T., Reich H., Machens G., Wildemann B. Haemodilution with dextran 40 and hydroxyethyl starch and its effect on cerebral microcirculation. J Neurol. 1989 Mar;236(3):164–167. doi: 10.1007/BF00314334. [DOI] [PubMed] [Google Scholar]
  24. Self F., McIntire L. V., Zanger B. Rheological evaluation of hemoglobin S and hemoglobin C hemoglobinopathies. J Lab Clin Med. 1977 Mar;89(3):488–497. [PubMed] [Google Scholar]
  25. St Louis P. J., Sulakhe P. V. Phosphorylation of cardiac sarcolemma by endogenous and exogenous protein kinases. Arch Biochem Biophys. 1979 Nov;198(1):227–240. doi: 10.1016/0003-9861(79)90414-4. [DOI] [PubMed] [Google Scholar]
  26. Thomas D. J. Whole blood viscosity and cerebral blood flow. Stroke. 1982 May-Jun;13(3):285–287. doi: 10.1161/01.str.13.3.285. [DOI] [PubMed] [Google Scholar]
  27. Trope G. E., Lowe G. D., McArdle B. M., Douglas J. T., Forbes C. D., Prentice C. M., Foulds W. S. Abnormal blood viscosity and haemostasis in long-standing retinal vein occlusion. Br J Ophthalmol. 1983 Mar;67(3):137–142. doi: 10.1136/bjo.67.3.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tso M. O. Pathology of cystoid macular edema. Ophthalmology. 1982 Aug;89(8):902–915. doi: 10.1016/s0161-6420(82)34698-9. [DOI] [PubMed] [Google Scholar]
  29. Waters L. M., Christensen M. A., Sato R. M. Hetastarch: an alternative colloid in burn shock management. J Burn Care Rehabil. 1989 Jan-Feb;10(1):11–16. [PubMed] [Google Scholar]

Articles from The British Journal of Ophthalmology are provided here courtesy of BMJ Publishing Group

RESOURCES