Abstract
AIMS—To evaluate intra- and interobserver variability in measurements on normal and astigmatic corneas with keratometry and computerised videokeratography. METHODS—Keratometric readings with the 10 SL/O Zeiss keratometer and topographic maps with the TMS-1 were obtained by two independent examiners on 32 normal and 33 postkeratoplasty corneas. Inter- and intraobserver coefficients of variability (COR) for measurements of steep and flat meridian power and location, in addition to the magnitude of astigmatism, were assessed. RESULTS—Compared with TMS-1, the 10 SL/O keratometer showed a superior repeatability in measuring normal corneas (intraobserver COR for keratometry and TMS-1 respectively: 0.22 and 0.30 D for steep meridian power; 0.18 and 0.44 D for flat meridian power; 0.26 and 0.40 D for astigmatism; 5° and 26° for steep meridian location; 5° and 13° for flat meridian location). Astigmatism intraobserver COR (0.20 D and 0.26 D for the two observers) and interobserver COR (0.28 D) of the keratometer for normal corneas was very good and not affected by observers' experience. Repeatability of the TMS-1 on normal corneas was found to be: (a) observer related, and (b) astigmatism related. A novice observer showed a much greater COR (1.62 D for astigmatism, 30° for flat meridian location) compared with the experienced examiner (0.40 D for astigmatism, 13° for flat meridian location). Higher deviation scores were observed for corneas with higher astigmatism. For the postkeratoplasty corneas, again the keratometer achieved superior reproducibility (astigmatism interobserver COR 1.12 D for keratometry, 4.06 D for TMS-1; steep meridian location interobserver COR 10° for keratometry, 34° for TMS-1). CONCLUSION—Keratometric readings are more reproducible than topographic data both for normal and postkeratoplasty corneas. The two instruments should not be used interchangeably especially on highly astigmatic corneas. For the TMS-1, users with the same level of experience should be employed in clinical or experimental studies. Keywords: keratometry; computerised videokeratography; astigmatic corneas
Full Text
The Full Text of this article is available as a PDF (108.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bland J. M., Altman D. G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986 Feb 8;1(8476):307–310. [PubMed] [Google Scholar]
- Davis L. J., Dresner M. S. A comparison of the EH-270 corneal topographer with conventional keratometry. CLAO J. 1991 Jul;17(3):191–196. [PubMed] [Google Scholar]
- Hannush S. B., Crawford S. L., Waring G. O., 3rd, Gemmill M. C., Lynn M. J., Nizam A. Accuracy and precision of keratometry, photokeratoscopy, and corneal modeling on calibrated steel balls. Arch Ophthalmol. 1989 Aug;107(8):1235–1239. doi: 10.1001/archopht.1989.01070020301043. [DOI] [PubMed] [Google Scholar]
- Hannush S. B., Crawford S. L., Waring G. O., 3rd, Gemmill M. C., Lynn M. J., Nizam A. Reproducibility of normal corneal power measurements with a keratometer, photokeratoscope, and video imaging system. Arch Ophthalmol. 1990 Apr;108(4):539–544. doi: 10.1001/archopht.1990.01070060087055. [DOI] [PubMed] [Google Scholar]
- Hubbe R. E., Foulks G. N. The effect of poor fixation on computer-assisted topographic corneal analysis. Pseudokeratoconus. Ophthalmology. 1994 Oct;101(10):1745–1748. doi: 10.1016/s0161-6420(94)31109-2. [DOI] [PubMed] [Google Scholar]
- Legeais J. M., Ren Q., Simon G., Parel J. M. Computer-assisted corneal topography: accuracy and reproducibility of the topographic modeling system. Refract Corneal Surg. 1993 Sep-Oct;9(5):347–357. [PubMed] [Google Scholar]
- Maguire L. J., Wilson S. E., Camp J. J., Verity S. Evaluating the reproducibility of topography systems on spherical surfaces. Arch Ophthalmol. 1993 Feb;111(2):259–262. doi: 10.1001/archopht.1993.01090020113034. [DOI] [PubMed] [Google Scholar]
- Mammone R. J., Gersten M., Gormley D. J., Koplin R. S., Lubkin V. L. 3-D corneal modeling system. IEEE Trans Biomed Eng. 1990 Jan;37(1):66–72. doi: 10.1109/10.43617. [DOI] [PubMed] [Google Scholar]
- Mandell R. B. Everett Kinsey Lecture. The enigma of the corneal contour. CLAO J. 1992 Oct;18(4):267–273. [PubMed] [Google Scholar]
- McCarey B. E., Zurawski C. A., O'Shea D. S. Practical aspects of a corneal topography system. CLAO J. 1992 Oct;18(4):248–254. [PubMed] [Google Scholar]
- Roberts C. The accuracy of 'power' maps to display curvature data in corneal topography systems. Invest Ophthalmol Vis Sci. 1994 Aug;35(9):3525–3532. [PubMed] [Google Scholar]
- STONE J. The validity of some existing methods of measuring corneal contour compared with suggested new methods. Br J Physiol Opt. 1962 Oct-Dec;19:205–230. [PubMed] [Google Scholar]
- Tsilimbaris M. K., Vlachonikolis I. G., Siganos D., Makridakis G., Pallikaris I. G. Comparison of keratometric readings as obtained by Javal Ophthalmometer and Corneal Analysis System (EyeSys). Refract Corneal Surg. 1991 Sep-Oct;7(5):368–373. [PubMed] [Google Scholar]
- Wang J. Y., Rice D. A., Klyce S. D. Analysis of the effects of astigmatism and misalignment on corneal surface reconstruction from photokeratoscopic data. Refract Corneal Surg. 1991 Mar-Apr;7(2):129–140. [PubMed] [Google Scholar]
- Wilson S. E., Verity S. M., Conger D. L. Accuracy and precision of the corneal analysis system and the topographic modeling system. Cornea. 1992 Jan;11(1):28–35. doi: 10.1097/00003226-199201000-00004. [DOI] [PubMed] [Google Scholar]