Abstract
AIMS—This study was designed to investigate pulsatile ocular blood flow (POBF) in normal tension glaucoma (NTG) patients and in normal controls. NTG patients with unilateral field loss were evaluated to compare POBF values between eyes with and without field loss. METHODS—POBF measurements from more than 1500 subjects were collected during a period of 6 months from six optometric centres. Subjects with systemic vascular diseases (such as systemic hypertension and diabetes), ophthalmic diseases, a positive family history of glaucoma, and those individuals receiving treatment with systemic β blockers were excluded on the basis of a questionnaire. For comparison, 95 NTG patients with unilateral field loss, selected from 403 consecutive patients with NTG, underwent POBF testing. For each individual age, sex, intraocular pressure, refraction, and pulse rate were entered into a database. RESULTS—Data from 777 subjects were included in the analysis. POBF measurements of patients and subjects were compared allowing for differences in age, sex, intraocular pressure, refraction, and pulse rate. POBF was significantly lower in eyes of NTG patients with and without field loss (p <0.001 and p = 0.01 respectively). Eyes of NTG patients with field loss showed significantly lower POBF than the contralateral eyes with normal field (p < 0.001). CONCLUSIONS—POBF was significantly lower in eyes of NTG patients with and without field loss than in normal subjects, suggesting that differences in ocular blood perfusion are relevant to the development of NTG and are detectable from the early stage of the disease. Furthermore, the finding of lower POBF in NTG eyes with field loss than in the contralateral eyes with normal field suggests that haemodynamic differences between fellow eyes contribute to determine the side of onset of the disease. Keywords: pulsatile ocular blood flow; normal tension glaucoma; visual field asymmetry
Full Text
The Full Text of this article is available as a PDF (139.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Butt Z., McKillop G., O'Brien C., Allan P., Aspinall P. Measurement of ocular blood flow velocity using colour Doppler imaging in low tension glaucoma. Eye (Lond) 1995;9(Pt 1):29–33. doi: 10.1038/eye.1995.4. [DOI] [PubMed] [Google Scholar]
- Caprioli J., Miller J. M., Sears M. Quantitative evaluation of the optic nerve head in patients with unilateral visual field loss from primary open-angle glaucoma. Ophthalmology. 1987 Nov;94(11):1484–1487. doi: 10.1016/s0161-6420(87)33264-6. [DOI] [PubMed] [Google Scholar]
- Cartwright M. J., Anderson D. R. Correlation of asymmetric damage with asymmetric intraocular pressure in normal-tension glaucoma (low-tension glaucoma). Arch Ophthalmol. 1988 Jul;106(7):898–900. doi: 10.1001/archopht.1988.01060140044020. [DOI] [PubMed] [Google Scholar]
- Crichton A., Drance S. M., Douglas G. R., Schulzer M. Unequal intraocular pressure and its relation to asymmetric visual field defects in low-tension glaucoma. Ophthalmology. 1989 Sep;96(9):1312–1314. doi: 10.1016/s0161-6420(89)32721-7. [DOI] [PubMed] [Google Scholar]
- Drance S. M., Douglas G. R., Wijsman K., Schulzer M., Britton R. J. Response of blood flow to warm and cold in normal and low-tension glaucoma patients. Am J Ophthalmol. 1988 Jan 15;105(1):35–39. doi: 10.1016/0002-9394(88)90118-3. [DOI] [PubMed] [Google Scholar]
- Drance S. M., Sweeney V. P., Morgan R. W., Feldman F. Studies of factors involved in the production of low tension glaucoma. Arch Ophthalmol. 1973 Jun;89(6):457–465. doi: 10.1001/archopht.1973.01000040459003. [DOI] [PubMed] [Google Scholar]
- Galassi F., Nuzzaci G., Sodi A., Casi P., Vielmo A. Color Doppler imaging in evaluation of optic nerve blood supply in normal and glaucomatous subjects. Int Ophthalmol. 1992 Sep;16(4-5):273–276. doi: 10.1007/BF00917974. [DOI] [PubMed] [Google Scholar]
- Graham S. L., Drance S. M., Wijsman K., Douglas G. R., Mikelberg F. S. Ambulatory blood pressure monitoring in glaucoma. The nocturnal dip. Ophthalmology. 1995 Jan;102(1):61–69. doi: 10.1016/s0161-6420(95)31053-6. [DOI] [PubMed] [Google Scholar]
- Harris A., Sergott R. C., Spaeth G. L., Katz J. L., Shoemaker J. A., Martin B. J. Color Doppler analysis of ocular vessel blood velocity in normal-tension glaucoma. Am J Ophthalmol. 1994 Nov 15;118(5):642–649. doi: 10.1016/s0002-9394(14)76579-1. [DOI] [PubMed] [Google Scholar]
- Hayreh S. S., Zimmerman M. B., Podhajsky P., Alward W. L. Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol. 1994 May 15;117(5):603–624. doi: 10.1016/s0002-9394(14)70067-4. [DOI] [PubMed] [Google Scholar]
- James C. B., Smith S. E. Pulsatile ocular blood flow in patients with low tension glaucoma. Br J Ophthalmol. 1991 Aug;75(8):466–470. doi: 10.1136/bjo.75.8.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- James C. B., Trew D. R., Clark K., Smith S. E. Factors influencing the ocular pulse--axial length. Graefes Arch Clin Exp Ophthalmol. 1991;229(4):341–344. doi: 10.1007/BF00170692. [DOI] [PubMed] [Google Scholar]
- Jay J. L., Murdoch J. R. The rate of visual field loss in untreated primary open angle glaucoma. Br J Ophthalmol. 1993 Mar;77(3):176–178. doi: 10.1136/bjo.77.3.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaiser H. J., Schoetzau A., Stümpfig D., Flammer J. Blood-flow velocities of the extraocular vessels in patients with high-tension and normal-tension primary open-angle glaucoma. Am J Ophthalmol. 1997 Mar;123(3):320–327. doi: 10.1016/s0002-9394(14)70127-8. [DOI] [PubMed] [Google Scholar]
- Klein B. E., Klein R., Sponsel W. E., Franke T., Cantor L. B., Martone J., Menage M. J. Prevalence of glaucoma. The Beaver Dam Eye Study. Ophthalmology. 1992 Oct;99(10):1499–1504. doi: 10.1016/s0161-6420(92)31774-9. [DOI] [PubMed] [Google Scholar]
- Krakau C. E. A model for pulsatile and steady ocular blood flow. Graefes Arch Clin Exp Ophthalmol. 1995 Feb;233(2):112–118. doi: 10.1007/BF00241481. [DOI] [PubMed] [Google Scholar]
- Krakau C. E. Calculation of the pulsatile ocular blood flow. Invest Ophthalmol Vis Sci. 1992 Aug;33(9):2754–2756. [PubMed] [Google Scholar]
- Langham M. E., Farrell R. A., O'Brien V., Silver D. M., Schilder P. Blood flow in the human eye. Acta Ophthalmol Suppl. 1989;191:9–13. doi: 10.1111/j.1755-3768.1989.tb07080.x. [DOI] [PubMed] [Google Scholar]
- Langham M. E., To'Mey K. F. A clinical procedure for the measurements of the ocular pulse-pressure relationship and the ophthalmic arterial pressure. Exp Eye Res. 1978 Jul;27(1):17–25. doi: 10.1016/0014-4835(78)90049-0. [DOI] [PubMed] [Google Scholar]
- Nicolela M. T., Drance S. M., Rankin S. J., Buckley A. R., Walman B. E. Color Doppler imaging in patients with asymmetric glaucoma and unilateral visual field loss. Am J Ophthalmol. 1996 May;121(5):502–510. doi: 10.1016/s0002-9394(14)75424-8. [DOI] [PubMed] [Google Scholar]
- O'Brien C., Butt Z., Ludlam C., Detkova P. Activation of the coagulation cascade in untreated primary open-angle glaucoma. Ophthalmology. 1997 Apr;104(4):725–730. doi: 10.1016/s0161-6420(97)30245-0. [DOI] [PubMed] [Google Scholar]
- Onda E., Cioffi G. A., Bacon D. R., Van Buskirk E. M. Microvasculature of the human optic nerve. Am J Ophthalmol. 1995 Jul;120(1):92–102. doi: 10.1016/s0002-9394(14)73763-8. [DOI] [PubMed] [Google Scholar]
- Perkins E. S. Ocular volume and ocular rigidity. Exp Eye Res. 1981 Aug;33(2):141–145. doi: 10.1016/s0014-4835(81)80062-0. [DOI] [PubMed] [Google Scholar]
- Quaranta L., Manni G., Donato F., Bucci M. G. The effect of increased intraocular pressure on pulsatile ocular blood flow in low tension glaucoma. Surv Ophthalmol. 1994 May;38 (Suppl):S177–S182. doi: 10.1016/0039-6257(94)90064-7. [DOI] [PubMed] [Google Scholar]
- Quigley H. A., Addicks E. M., Green W. R. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol. 1982 Jan;100(1):135–146. doi: 10.1001/archopht.1982.01030030137016. [DOI] [PubMed] [Google Scholar]
- Rankin S. J., Walman B. E., Buckley A. R., Drance S. M. Color Doppler imaging and spectral analysis of the optic nerve vasculature in glaucoma. Am J Ophthalmol. 1995 Jun;119(6):685–693. doi: 10.1016/s0002-9394(14)72771-0. [DOI] [PubMed] [Google Scholar]
- Ravalico G., Pastori G., Toffoli G., Crocé M. Visual and blood flow responses in low-tension glaucoma. Surv Ophthalmol. 1994 May;38 (Suppl):S173–S176. doi: 10.1016/0039-6257(94)90063-9. [DOI] [PubMed] [Google Scholar]
- Ravalico G., Toffoli G., Pastori G., Crocè M., Calderini S. Age-related ocular blood flow changes. Invest Ophthalmol Vis Sci. 1996 Dec;37(13):2645–2650. [PubMed] [Google Scholar]
- Rojanapongpun P., Drance S. M., Morrison B. J. Ophthalmic artery flow velocity in glaucomatous and normal subjects. Br J Ophthalmol. 1993 Jan;77(1):25–29. doi: 10.1136/bjo.77.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schulzer M., Drance S. M., Carter C. J., Brooks D. E., Douglas G. R., Lau W. Biostatistical evidence for two distinct chronic open angle glaucoma populations. Br J Ophthalmol. 1990 Apr;74(4):196–200. doi: 10.1136/bjo.74.4.196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shiose Y., Kitazawa Y., Tsukahara S., Akamatsu T., Mizokami K., Futa R., Katsushima H., Kosaki H. Epidemiology of glaucoma in Japan--a nationwide glaucoma survey. Jpn J Ophthalmol. 1991;35(2):133–155. [PubMed] [Google Scholar]
- Silver D. M., Farrell R. A., Langham M. E., O'Brien V., Schilder P. Estimation of pulsatile ocular blood flow from intraocular pressure. Acta Ophthalmol Suppl. 1989;191:25–29. doi: 10.1111/j.1755-3768.1989.tb07083.x. [DOI] [PubMed] [Google Scholar]
- Silver D. M., Farrell R. A. Validity of pulsatile ocular blood flow measurements. Surv Ophthalmol. 1994 May;38 (Suppl):S72–S80. doi: 10.1016/0039-6257(94)90049-3. [DOI] [PubMed] [Google Scholar]
- Sommer A., Tielsch J. M., Katz J., Quigley H. A., Gottsch J. D., Javitt J., Singh K. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey. Arch Ophthalmol. 1991 Aug;109(8):1090–1095. doi: 10.1001/archopht.1991.01080080050026. [DOI] [PubMed] [Google Scholar]
- Tuulonen A., Nagin P., Schwartz B., Wu D. C. Increase of pallor and fluorescein-filling defects of the optic disc in the follow-up of ocular hypertensives measured by computerized image analysis. Ophthalmology. 1987 May;94(5):558–563. doi: 10.1016/s0161-6420(87)33411-6. [DOI] [PubMed] [Google Scholar]
- Williamson T. H., Harris A. Ocular blood flow measurement. Br J Ophthalmol. 1994 Dec;78(12):939–945. doi: 10.1136/bjo.78.12.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williamson T. H., Lowe G. D., Baxter G. M. Influence of age, systemic blood pressure, smoking, and blood viscosity on orbital blood velocities. Br J Ophthalmol. 1995 Jan;79(1):17–22. doi: 10.1136/bjo.79.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolf S., Arend O., Sponsel W. E., Schulte K., Cantor L. B., Reim M. Retinal hemodynamics using scanning laser ophthalmoscopy and hemorheology in chronic open-angle glaucoma. Ophthalmology. 1993 Oct;100(10):1561–1566. doi: 10.1016/s0161-6420(93)31444-2. [DOI] [PubMed] [Google Scholar]
- Yang Y. C., Hulbert M. F., Batterbury M., Clearkin L. G. Pulsatile ocular blood flow measurements in healthy eyes: reproducibility and reference values. J Glaucoma. 1997 Jun;6(3):175–179. [PubMed] [Google Scholar]