Skip to main content
The British Journal of Ophthalmology logoLink to The British Journal of Ophthalmology
. 1999 Dec;83(12):1376–1383. doi: 10.1136/bjo.83.12.1376

Role of ocular matrix metalloproteinases in peripheral ulcerative keratitis

V Smith 1, H Hoh 1, D Easty 1
PMCID: PMC1722888  PMID: 10574817

Abstract

AIM—Peripheral ulcerative keratitis (PUK) is an ocular manifestation of rheumatoid arthritis and other similar systemic diseases. The purpose of this inquiry was to investigate the involvement of matrix metalloproteinases (MMPs) in the induction and/or maintenance of PUK.
METHODS—Substrate gel electrophoresis was used to characterise the MMP activities secreted by primary cultures of keratocytes derived from normal and perforated pathological corneal specimens, and those present in tears of normal subjects and patients with PUK. Substrate specificity and the in vivo activity status of the secreted MMPs was assessed by SDS-polyacrylamide gel electrophoresis of standard collagens incubated in the presence or absence of the various enzyme preparations.
RESULTS—In addition to MMP-2 of Mr 66 000, cultured keratocytes derived from perforated corneas of patients with PUK abnormally produce the MMP-2 of apparent Mr 62 000. Other MMPs and in particular MMP-9 of Mr 92 000, also occur in the tears of these patients. Their visualisation on substrate polyacrylamide gels correlated with clinical manifestations of disease activity; during periods of disease quiescence they were barely detectable. The steroid prednisolone, frequently used in systemic therapy, had no effect on the in vitro activity of MMP-2, or on its production by cultured corneal keratocytes. Although the in vitro activity of MMP-2 was inhibited by both Cu2+ and Zn2+, Cu2+ apparently induced the keratocytes to produce activated enzyme and Zn2+ irreversibly inhibited their production of MMP-2.
CONCLUSION—Overexpression of corneal MMP-2 and tear film MMP-9 are characteristic features of patients with PUK and their activation may be a crucial facet of disease initiation or progression. Although effective in systemic therapy for PUK, prednisolone had no direct control over corneal MMP-2 production or activity. Zn2+ on the other hand inhibited both MMP-2 production and MMP-2 activity and may, therefore, be of therapeutic value if suitably formulated and used in conjunction with systemic steroid treatment.



Full Text

The Full Text of this article is available as a PDF (175.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berman M. B. Regulation of corneal fibroblast MMP-1 secretion by cytochalasins. Cornea. 1994 Jan;13(1):51–57. doi: 10.1097/00003226-199401000-00009. [DOI] [PubMed] [Google Scholar]
  2. Berman M., Leary R., Gage J. Collagenase from corneal cell cultures and its modulation by phagocytosis. Invest Ophthalmol Vis Sci. 1979 Jun;18(6):588–601. [PubMed] [Google Scholar]
  3. Brown D., Chwa M. M., Opbroek A., Kenney M. C. Keratoconus corneas: increased gelatinolytic activity appears after modification of inhibitors. Curr Eye Res. 1993 Jun;12(6):571–581. doi: 10.3109/02713689309001835. [DOI] [PubMed] [Google Scholar]
  4. Brown D., Chwa M., Escobar M., Kenney M. C. Characterization of the major matrix degrading metalloproteinase of human corneal stroma. Evidence for an enzyme/inhibitor complex. Exp Eye Res. 1991 Jan;52(1):5–16. doi: 10.1016/0014-4835(91)90123-v. [DOI] [PubMed] [Google Scholar]
  5. Brown S. I., Weller C. A., Wassermann H. E. Collagenolytic activity of alkali-burned corneas. Arch Ophthalmol. 1969 Mar;81(3):370–373. doi: 10.1001/archopht.1969.00990010372015. [DOI] [PubMed] [Google Scholar]
  6. Crabbe T., Willenbrock F., Eaton D., Hynds P., Carne A. F., Murphy G., Docherty A. J. Biochemical characterization of matrilysin. Activation conforms to the stepwise mechanisms proposed for other matrix metalloproteinases. Biochemistry. 1992 Sep 15;31(36):8500–8507. doi: 10.1021/bi00151a017. [DOI] [PubMed] [Google Scholar]
  7. Eiferman R. A., Carothers D. J., Yankeelov J. A., Jr Peripheral rheumatoid ulceration and evidence for conjunctival collagenase production. Am J Ophthalmol. 1979 May;87(5):703–709. doi: 10.1016/0002-9394(79)90308-8. [DOI] [PubMed] [Google Scholar]
  8. Fini M. E., Yue B. Y., Sugar J. Collagenolytic/gelatinolytic metalloproteinases in normal and keratoconus corneas. Curr Eye Res. 1992 Sep;11(9):849–862. doi: 10.3109/02713689209033483. [DOI] [PubMed] [Google Scholar]
  9. Gall B. G., Hartl D. L. Regulation of newly evolved enzymes. II. The ebg repressor. Genetics. 1975 Nov;81(3):427–435. doi: 10.1093/genetics/81.3.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gordon J. M., Bauer E. A., Eisen A. Z. Collagenase in human cornea: immunologic localization. Arch Ophthalmol. 1980 Feb;98(2):341–345. doi: 10.1001/archopht.1980.01020030337022. [DOI] [PubMed] [Google Scholar]
  11. Hibbs M. S., Hasty K. A., Seyer J. M., Kang A. H., Mainardi C. L. Biochemical and immunological characterization of the secreted forms of human neutrophil gelatinase. J Biol Chem. 1985 Feb 25;260(4):2493–2500. [PubMed] [Google Scholar]
  12. Howard E. W., Banda M. J. Binding of tissue inhibitor of metalloproteinases 2 to two distinct sites on human 72-kDa gelatinase. Identification of a stabilization site. J Biol Chem. 1991 Sep 25;266(27):17972–17977. [PubMed] [Google Scholar]
  13. Howard E. W., Bullen E. C., Banda M. J. Regulation of the autoactivation of human 72-kDa progelatinase by tissue inhibitor of metalloproteinases-2. J Biol Chem. 1991 Jul 15;266(20):13064–13069. [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Landegren U. Measurement of cell numbers by means of the endogenous enzyme hexosaminidase. Applications to detection of lymphokines and cell surface antigens. J Immunol Methods. 1984 Mar 16;67(2):379–388. doi: 10.1016/0022-1759(84)90477-0. [DOI] [PubMed] [Google Scholar]
  16. Larsen K. S., Auld D. S. Characterization of an inhibitory metal binding site in carboxypeptidase A. Biochemistry. 1991 Mar 12;30(10):2613–2618. doi: 10.1021/bi00224a007. [DOI] [PubMed] [Google Scholar]
  17. Liotta L. A., Abe S., Robey P. G., Martin G. R. Preferential digestion of basement membrane collagen by an enzyme derived from a metastatic murine tumor. Proc Natl Acad Sci U S A. 1979 May;76(5):2268–2272. doi: 10.1073/pnas.76.5.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Matrisian L. M. The matrix-degrading metalloproteinases. Bioessays. 1992 Jul;14(7):455–463. doi: 10.1002/bies.950140705. [DOI] [PubMed] [Google Scholar]
  19. Riley G. P., Harrall R. L., Watson P. G., Cawston T. E., Hazleman B. L. Collagenase (MMP-1) and TIMP-1 in destructive corneal disease associated with rheumatoid arthritis. Eye (Lond) 1995;9(Pt 6):703–718. doi: 10.1038/eye.1995.182. [DOI] [PubMed] [Google Scholar]
  20. Smith V. A., Hoh H. B., Littleton M., Easty D. L. Over-expression of a gelatinase A activity in keratoconus. Eye (Lond) 1995;9(Pt 4):429–433. doi: 10.1038/eye.1995.100. [DOI] [PubMed] [Google Scholar]
  21. Strongin A. Y., Marmer B. L., Grant G. A., Goldberg G. I. Plasma membrane-dependent activation of the 72-kDa type IV collagenase is prevented by complex formation with TIMP-2. J Biol Chem. 1993 Jul 5;268(19):14033–14039. [PubMed] [Google Scholar]
  22. Tauber J., Sainz de la Maza M., Hoang-Xuan T., Foster C. S. An analysis of therapeutic decision making regarding immunosuppressive chemotherapy for peripheral ulcerative keratitis. Cornea. 1990 Jan;9(1):66–73. [PubMed] [Google Scholar]
  23. Unemori E. N., Werb Z. Reorganization of polymerized actin: a possible trigger for induction of procollagenase in fibroblasts cultured in and on collagen gels. J Cell Biol. 1986 Sep;103(3):1021–1031. doi: 10.1083/jcb.103.3.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wilhelm S. M., Collier I. E., Marmer B. L., Eisen A. Z., Grant G. A., Goldberg G. I. SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem. 1989 Oct 15;264(29):17213–17221. [PubMed] [Google Scholar]

Articles from The British Journal of Ophthalmology are provided here courtesy of BMJ Publishing Group

RESOURCES