Abstract
BACKGROUND/AIMS—Inflammatory cells and antigen presenting cells (APC) are not present under normal circumstances in the centre of the healthy cornea. The purpose of this study was to investigate and phenotype the inflammatory cell populations, particularly with reference to T cell subpopulations and macrophages, and to localise dendritic cells (DC) and other MHC class II positive cells in three groups of grafted corneas: rejected non-inflamed, rejected inflamed grafts, and control dystrophic explants. METHODS—15 corneal buttons removed during keratoplasty from non-inflamed "quiet" previously grafted corneas, five inflamed corneas requiring urgent regrafting for "graft melting" (in "high risk" corneas), and 10 control dystrophic opaque corneas explanted during their first graft procedure were examined. Cryosections of corneas were immunostained with a panel of monoclonal antibodies (mAb) against CD3, CD4, CD8, CD14, CD25, CD68, HLA-DP, and HLA-DR molecules using the StreptABC method. DC were detected by dual immunostaining as CD1a+ and MHC class II+ and CD19−. Cell densities in immunostained tissue sections were evaluated using a scale from 0 to +4. RESULTS—Immunostaining in control dystrophic corneas was negative for all antibodies. A moderate to high density of CD8+, CD14+, and CD68+ cells was observed in the majority of rejected non-inflamed as well as in rejected inflamed corneal buttons. Strong positivity for HLA-DP and HLA-DR molecules in the epithelium, stroma, and endothelium was also demonstrated. Weak positivity for CD4 and CD25 was observed in six of 15 and 11 of 15 rejected corneas, respectively. The presence of dendritic cells in the basal layer of the epithelium and in the stroma was observed in 50% of the grafts. CONCLUSIONS—A high frequency of macrophages, the presence of DC in the explants, and strong expression of HLA-DP and HLA-DR molecules on resident cells are characteristics of rejected corneal allografts, whether actively inflamed or not. The presence of DC in the stroma of the grafted cornea suggests that they may be mainly responsible for T cell activation and graft rejection since DC are known to be a 100-fold more potent than macrophages as APC.
Full Text
The Full Text of this article is available as a PDF (156.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brady S. E., Rapuano C. J., Arentsen J. J., Cohen E. J., Laibson P. R. Clinical indications for and procedures associated with penetrating keratoplasty, 1983-1988. Am J Ophthalmol. 1989 Aug 15;108(2):118–122. doi: 10.1016/0002-9394(89)90003-2. [DOI] [PubMed] [Google Scholar]
- Catry L., Van den Oord J., Foets B., Missotten L. Morphologic and immunophenotypic heterogeneity of corneal dendritic cells. Graefes Arch Clin Exp Ophthalmol. 1991;229(2):182–185. doi: 10.1007/BF00170554. [DOI] [PubMed] [Google Scholar]
- Delbosc B., Fellmann D., Piquot X., Montard M., Royer J. Antigénicité HLA des cornées humaines normales et pathologiques. J Fr Ophtalmol. 1990;13(11-12):535–541. [PubMed] [Google Scholar]
- Ferguson T. A., Fletcher S., Herndon J., Griffith T. S. Neuropeptides modulate immune deviation induced via the anterior chamber of the eye. J Immunol. 1995 Aug 15;155(4):1746–1756. [PubMed] [Google Scholar]
- Forrester J. V., McMenamin P. G., Holthouse I., Lumsden L., Liversidge J. Localization and characterization of major histocompatibility complex class II-positive cells in the posterior segment of the eye: implications for induction of autoimmune uveoretinitis. Invest Ophthalmol Vis Sci. 1994 Jan;35(1):64–77. [PubMed] [Google Scholar]
- Holland E. J., Chan C. C., Wetzig R. P., Palestine A. G., Nussenblatt R. B. Clinical and immunohistologic studies of corneal rejection in the rat penetrating keratoplasty model. Cornea. 1991 Sep;10(5):374–380. doi: 10.1097/00003226-199109000-00003. [DOI] [PubMed] [Google Scholar]
- Joo C. K., Pepose J. S., Stuart P. M. T-cell mediated responses in a murine model of orthotopic corneal transplantation. Invest Ophthalmol Vis Sci. 1995 Jul;36(8):1530–1540. [PubMed] [Google Scholar]
- Ju S. T., Panka D. J., Cui H., Ettinger R., el-Khatib M., Sherr D. H., Stanger B. Z., Marshak-Rothstein A. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature. 1995 Feb 2;373(6513):444–448. doi: 10.1038/373444a0. [DOI] [PubMed] [Google Scholar]
- Klareskog L., Forsum U., Tjernlund U. M., Rask L., Peterson P. A. Expression of Ia antigen-like molecules on cells in the corneal epithelium. Invest Ophthalmol Vis Sci. 1979 Mar;18(3):310–313. [PubMed] [Google Scholar]
- Larkin D. F., Alexander R. A., Cree I. A. Infiltrating inflammatory cell phenotypes and apoptosis in rejected human corneal allografts. Eye (Lond) 1997;11(Pt 1):68–74. doi: 10.1038/eye.1997.13. [DOI] [PubMed] [Google Scholar]
- Larkin D. F., Calder V. L., Lightman S. L. Identification and characterization of cells infiltrating the graft and aqueous humour in rat corneal allograft rejection. Clin Exp Immunol. 1997 Feb;107(2):381–391. doi: 10.1111/j.1365-2249.1997.279-ce1171.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuda A., Tagawa Y., Matsuda H., Nishihira J. Identification and immunohistochemical localization of macrophage migration inhibitory factor in human cornea. FEBS Lett. 1996 May 6;385(3):225–228. doi: 10.1016/0014-5793(96)00386-9. [DOI] [PubMed] [Google Scholar]
- Nicholls S. M. Non-HLA antigens and HLA-DR matching in corneal transplantation. Br J Ophthalmol. 1996 Sep;80(9):780–782. doi: 10.1136/bjo.80.9.780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pels E., van der Gaag R. HLA-A,B,C, and HLA-DR antigens and dendritic cells in fresh and organ culture preserved corneas. Cornea. 1984 1985;3(4):231–239. [PubMed] [Google Scholar]
- Pepose J. S., Nestor M. S., Gardner K. M., Foos R. Y., Pettit T. H. Composition of cellular infiltrates in rejected human corneal allografts. Graefes Arch Clin Exp Ophthalmol. 1985;222(3):128–133. doi: 10.1007/BF02173536. [DOI] [PubMed] [Google Scholar]
- Sonoda Y., Streilein J. W. Impaired cell-mediated immunity in mice bearing healthy orthotopic corneal allografts. J Immunol. 1993 Mar 1;150(5):1727–1734. [PubMed] [Google Scholar]
- Steinman R. M. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991;9:271–296. doi: 10.1146/annurev.iy.09.040191.001415. [DOI] [PubMed] [Google Scholar]
- Stuart P. M., Griffith T. S., Usui N., Pepose J., Yu X., Ferguson T. A. CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. J Clin Invest. 1997 Feb 1;99(3):396–402. doi: 10.1172/JCI119173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Treseler P. A., Sanfilippo F. The expression of major histocompatibility complex and leukocyte antigens by cells in the rat cornea. Transplantation. 1986 Feb;41(2):248–252. doi: 10.1097/00007890-198602000-00022. [DOI] [PubMed] [Google Scholar]
- Whitsett C. F., Stulting R. D. The distribution of HLA antigens on human corneal tissue. Invest Ophthalmol Vis Sci. 1984 May;25(5):519–524. [PubMed] [Google Scholar]
- Williams K. A., Ash J. K., Coster D. J. Histocompatibility antigen and passenger cell content of normal and diseased human cornea. Transplantation. 1985 Mar;39(3):265–269. doi: 10.1097/00007890-198503000-00011. [DOI] [PubMed] [Google Scholar]
- Williams K. A., White M. A., Ash J. K., Coster D. J. Leukocytes in the graft bed associated with corneal graft failure. Analysis by immunohistology and actuarial graft survival. Ophthalmology. 1989 Jan;96(1):38–44. doi: 10.1016/s0161-6420(89)32949-6. [DOI] [PubMed] [Google Scholar]