Skip to main content
The British Journal of Ophthalmology logoLink to The British Journal of Ophthalmology
. 1999 Apr;83(4):466–469. doi: 10.1136/bjo.83.4.466

Peripapillary retinal blood flow in normal tension glaucoma

H S Chung 1, A Harris 1, L Kagemann 1, B Martin 1
PMCID: PMC1722989  PMID: 10434872

Abstract

AIMS—To determine if normal tension glaucoma (NTG) patients differ from age matched controls in blood flow to the peripapillary retina, as measured with confocal scanning laser Doppler flowmetry (cSLDF; "Heidelberg retinal flowmetry").
METHODS—12 NTG patients and 12 age matched controls were compared using (a) 10 × 10 pixel boxes (the instrument default sample size), taken from the nasal and temporal peripapillary retina, (b) the average from two of these boxes, and (c) every qualifying pixel within the peripapillary retina.
RESULTS—Patients and controls did not differ in blood flow measured using the default sample from a single 10 × 10 pixel box, placed in either the temporal or nasal peripapillary retina, or expressed as the average from these two boxes. However, in histograms using every pixel from the peripapillary retina, NTG patients displayed significantly higher percentages of minimal flow pixels (defined as less than one arbitrary unit of flow: 30% v 19%, p <0.01), and significantly lower flow in the 25th, 50th, and 75th percentile flow pixel (each p <0.05) than did age matched controls.
CONCLUSION—NTG is characterised by reduced blood flow in the peripapillary retina, a result suggesting that blood flow deficits accompany, and perhaps may contribute to, disease development in these patients.

 Keywords: glaucoma; retina; blood flow; laser Doppler flowmeter

Full Text

The Full Text of this article is available as a PDF (102.7 KB).

Figure 1  .

Figure 1  

Confocal scanning laser Doppler flowmetry (cSLDF) of peripapillary retina. Left: arrow indicates 1 × 1 pixel (10 × 10 µm) measurement window, which, for pixel by pixel analysis, is moved over the entire image for data collection (large vessels and areas with inadequate focus (including rim and cup areas posterior to the focal plane) are excluded). Right: arrow indicates 10 × 10 pixel (100 × 100 µm) measurement window for conventional analysis, placed approximately 100 µm from the disc margin.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Butt Z., O'Brien C., McKillop G., Aspinall P., Allan P. Color Doppler imaging in untreated high- and normal-pressure open-angle glaucoma. Invest Ophthalmol Vis Sci. 1997 Mar;38(3):690–696. [PubMed] [Google Scholar]
  2. Duijm H. F., van den Berg T. J., Greve E. L. A comparison of retinal and choroidal hemodynamics in patients with primary open-angle glaucoma and normal-pressure glaucoma. Am J Ophthalmol. 1997 May;123(5):644–656. doi: 10.1016/s0002-9394(14)71077-3. [DOI] [PubMed] [Google Scholar]
  3. Hernandez M. R., Pena J. D. The optic nerve head in glaucomatous optic neuropathy. Arch Ophthalmol. 1997 Mar;115(3):389–395. doi: 10.1001/archopht.1997.01100150391013. [DOI] [PubMed] [Google Scholar]
  4. Holló G., van den Berg T. J., Greve E. L. Scanning laser Doppler flowmetry in glaucoma. Int Ophthalmol. 1996;20(1-3):63–70. doi: 10.1007/BF00212948. [DOI] [PubMed] [Google Scholar]
  5. Kagemann L., Harris A., Chung H. S., Evans D., Buck S., Martin B. Heidelberg retinal flowmetry: factors affecting blood flow measurement. Br J Ophthalmol. 1998 Feb;82(2):131–136. doi: 10.1136/bjo.82.2.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kaiser H. J., Schoetzau A., Stümpfig D., Flammer J. Blood-flow velocities of the extraocular vessels in patients with high-tension and normal-tension primary open-angle glaucoma. Am J Ophthalmol. 1997 Mar;123(3):320–327. doi: 10.1016/s0002-9394(14)70127-8. [DOI] [PubMed] [Google Scholar]
  7. Langhans M., Michelson G., Groh M. J. Effect of breathing 100% oxygen on retinal and optic nerve head capillary blood flow in smokers and non-smokers. Br J Ophthalmol. 1997 May;81(5):365–369. doi: 10.1136/bjo.81.5.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Michelson G., Langhans M. J., Groh M. J. Clinical investigation of the combination of a scanning laser ophthalmoscope and laser Doppler flowmeter. Ger J Ophthalmol. 1995 Nov;4(6):342–349. [PubMed] [Google Scholar]
  9. Michelson G., Langhans M. J., Groh M. J. Perfusion of the juxtapapillary retina and the neuroretinal rim area in primary open angle glaucoma. J Glaucoma. 1996 Apr;5(2):91–98. [PubMed] [Google Scholar]
  10. Michelson G., Schmauss B. Two dimensional mapping of the perfusion of the retina and optic nerve head. Br J Ophthalmol. 1995 Dec;79(12):1126–1132. doi: 10.1136/bjo.79.12.1126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Minckler D. S., Bunt A. H., Johanson G. W. Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Invest Ophthalmol Vis Sci. 1977 May;16(5):426–441. [PubMed] [Google Scholar]
  12. Nickells R. W. Retinal ganglion cell death in glaucoma: the how, the why, and the maybe. J Glaucoma. 1996 Oct;5(5):345–356. [PubMed] [Google Scholar]
  13. Nicolela M. T., Hnik P., Drance S. M. Scanning laser Doppler flowmeter study of retinal and optic disk blood flow in glaucomatous patients. Am J Ophthalmol. 1996 Dec;122(6):775–783. doi: 10.1016/s0002-9394(14)70373-3. [DOI] [PubMed] [Google Scholar]
  14. Nicolela M. T., Hnik P., Schulzer M., Drance S. M. Reproducibility of retinal and optic nerve head blood flow measurements with scanning laser Doppler flowmetry. J Glaucoma. 1997 Jun;6(3):157–164. [PubMed] [Google Scholar]
  15. O'Brart D. P., de Souza Lima M., Bartsch D. U., Freeman W., Weinreb R. N. Indocyanine green angiography of the peripapillary region in glaucomatous eyes by confocal scanning laser ophthalmoscopy. Am J Ophthalmol. 1997 May;123(5):657–666. doi: 10.1016/s0002-9394(14)71078-5. [DOI] [PubMed] [Google Scholar]
  16. Orgül S., Cioffi G. A., Wilson D. J., Bacon D. R., Van Buskirk E. M. An endothelin-1 induced model of optic nerve ischemia in the rabbit. Invest Ophthalmol Vis Sci. 1996 Aug;37(9):1860–1869. [PubMed] [Google Scholar]
  17. Quigley H. A., Nickells R. W., Kerrigan L. A., Pease M. E., Thibault D. J., Zack D. J. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci. 1995 Apr;36(5):774–786. [PubMed] [Google Scholar]
  18. Strenn K., Menapace R., Rainer G., Findl O., Wolzt M., Schmetterer L. Reproducibility and sensitivity of scanning laser Doppler flowmetry during graded changes in PO2. Br J Ophthalmol. 1997 May;81(5):360–364. doi: 10.1136/bjo.81.5.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stroman G. A., Stewart W. C., Golnik K. C., Curé J. K., Olinger R. E. Magnetic resonance imaging in patients with low-tension glaucoma. Arch Ophthalmol. 1995 Feb;113(2):168–172. doi: 10.1001/archopht.1995.01100020050027. [DOI] [PubMed] [Google Scholar]

Articles from The British Journal of Ophthalmology are provided here courtesy of BMJ Publishing Group

RESOURCES