Skip to main content
The British Journal of Ophthalmology logoLink to The British Journal of Ophthalmology
. 1999 May;83(5):616–621. doi: 10.1136/bjo.83.5.616

Correlation of histological findings with gadolinium enhanced MRI scans during healing of a PHEMA orbital implant in rabbits

C Hicks 1, I Morris 1, S Vijayasekaran 1, M Fallon 1, J McAllister 1, A Clayton 1, T Chirila 1, G Crawford 1, I Constable 1
PMCID: PMC1723032  PMID: 10216066

Abstract

BACKGROUND/AIMS—To investigate a poly(2-hydroxyethyl methacrylate) (PHEMA) orbital implant with a spongy anterior hemisphere and a smooth gel posterior hemisphere, by histology correlated with magnetic resonance images.
METHODS—Following enucleation, eight rabbits received PHEMA implants to which the muscles were directly sutured, and underwent gadolinium enhanced magnetic resonance imaging (MRI) from 3 to 52 weeks. After the rabbits were killed, the implants were removed, cut in a plane corresponding to the scan, and processed for light and electron microscopy.
RESULTS—All eight rabbits retained their implant to the end of the study period without complications. The scans demonstrated muscle attachment to the anterior half of the implant, and enhancement was seen on injection of gadolinium chelate. Histology confirmed muscle attachment, and cellular and vascular ingrowth. Over time, a transformation from reactive inflammatory to relatively non-vascular scar tissue was seen within the implant. Calcium deposits in one implant were detected by imaging and histology.
CONCLUSION—The implants are readily visualised on MRI. Muscle attachment and fibrovascular ingrowth into the anterior hemisphere are seen, while encapsulation of the posterior hemisphere is minimal. Histological findings confirm the progress of the healing response, with initial inflammation and marked vascularisation, developing later into quiescent scar tissue predominantly of fibroblasts.



Full Text

The Full Text of this article is available as a PDF (191.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chirila T. V., Vijayasekaran S., Horne R., Chen Y. C., Dalton P. D., Constable I. J., Crawford G. J. Interpenetrating polymer network (IPN) as a permanent joint between the elements of a new type of artificial cornea. J Biomed Mater Res. 1994 Jun;28(6):745–753. doi: 10.1002/jbm.820280612. [DOI] [PubMed] [Google Scholar]
  2. De Potter P., Shields C. L., Shields J. A., Flanders A. E., Rao V. M. Role of magnetic resonance imaging in the evaluation of the hydroxyapatite orbital implant. Ophthalmology. 1992 May;99(5):824–830. doi: 10.1016/s0161-6420(92)31918-9. [DOI] [PubMed] [Google Scholar]
  3. Dortzbach R. K., Kronish J. W., Gentry L. R. Magnetic resonance imaging of the orbit. Part I. Physical principles. Ophthal Plast Reconstr Surg. 1989;5(3):151–159. doi: 10.1097/00002341-198909000-00001. [DOI] [PubMed] [Google Scholar]
  4. Dortzbach R. K., Kronish J. W., Gentry L. R. Magnetic resonance imaging of the orbit. Part II. Clinical applications. Ophthal Plast Reconstr Surg. 1989;5(3):160–170. doi: 10.1097/00002341-198909000-00002. [DOI] [PubMed] [Google Scholar]
  5. Dutton J. J. Coralline hydroxyapatite as an ocular implant. Ophthalmology. 1991 Mar;98(3):370–377. doi: 10.1016/s0161-6420(91)32304-2. [DOI] [PubMed] [Google Scholar]
  6. Goldberg R. A., Dresner S. C., Braslow R. A., Kossovsky N., Legmann A. Animal model of porous polyethylene orbital implants. Ophthal Plast Reconstr Surg. 1994 Jun;10(2):104–109. doi: 10.1097/00002341-199406000-00006. [DOI] [PubMed] [Google Scholar]
  7. Hamilton H. E., Christianson M. D., Williams J. P., Thomas R. A. Evaluation of vascularization of coralline hydroxyapatite ocular implants by magnetic resonance imaging. Clin Imaging. 1992 Oct-Dec;16(4):243–246. doi: 10.1016/0899-7071(92)90005-t. [DOI] [PubMed] [Google Scholar]
  8. Jamell G. A., Hollsten D. A., Hawes M. J., Griffin D. J., Klingensmith W. C., White W. L., Spirnak J. Magnetic resonance imaging versus bone scan for assessment of vascularization of the hydroxyapatite orbital implant. Ophthal Plast Reconstr Surg. 1996 Jun;12(2):127–130. doi: 10.1097/00002341-199606000-00007. [DOI] [PubMed] [Google Scholar]
  9. Kazim M., Katowitz J. A., Fallon M., Piest K. L. Evaluation of a collagen/hydroxylapatite implant for orbital reconstructive surgery. Ophthal Plast Reconstr Surg. 1992;8(2):94–108. doi: 10.1097/00002341-199206000-00003. [DOI] [PubMed] [Google Scholar]
  10. McNab A. Hydroxyapatite orbital implants. Experience with 100 cases. Aust N Z J Ophthalmol. 1995 May;23(2):117–123. doi: 10.1111/j.1442-9071.1995.tb00139.x. [DOI] [PubMed] [Google Scholar]
  11. Menzel C., Grünwald F., Busin M., Mönks T., Hotze A. L., Schomburg A., Pavics L., Biersack H. J. Vascularisation of ocular coralline hydroxyapatite implants. Eur J Nucl Med. 1994 Dec;21(12):1343–1345. doi: 10.1007/BF02426700. [DOI] [PubMed] [Google Scholar]
  12. Numerow L. M., Kloiber R., Mitchell R. J., Molnar C. P., Anderson M. A. Hydroxyapatite orbital implants. Scanning with technetium-99m MDP. Clin Nucl Med. 1994 Jan;19(1):9–12. doi: 10.1097/00003072-199401000-00003. [DOI] [PubMed] [Google Scholar]
  13. Nunery W. R., Heinz G. W., Bonnin J. M., Martin R. T., Cepela M. A. Exposure rate of hydroxyapatite spheres in the anophthalmic socket: histopathologic correlation and comparison with silicone sphere implants. Ophthal Plast Reconstr Surg. 1993 Jun;9(2):96–104. doi: 10.1097/00002341-199306000-00004. [DOI] [PubMed] [Google Scholar]
  14. Oestreicher J. H. Treatment of exposed coral implant after failed scleral patch graft. Ophthal Plast Reconstr Surg. 1994 Jun;10(2):110–113. doi: 10.1097/00002341-199406000-00007. [DOI] [PubMed] [Google Scholar]
  15. Rosner M., Edward D. P., Tso M. O. Foreign-body giant-cell reaction to the hydroxyapatite orbital implant. Arch Ophthalmol. 1992 Feb;110(2):173–174. doi: 10.1001/archopht.1992.01080140023013. [DOI] [PubMed] [Google Scholar]
  16. Rubin P. A., Popham J. K., Bilyk J. R., Shore J. W. Comparison of fibrovascular ingrowth into hydroxyapatite and porous polyethylene orbital implants. Ophthal Plast Reconstr Surg. 1994 Jun;10(2):96–103. doi: 10.1097/00002341-199406000-00005. [DOI] [PubMed] [Google Scholar]
  17. Shields C. L., Shields J. A., De Potter P. Hydroxyapatite orbital implant after enucleation. Experience with initial 100 consecutive cases. Arch Ophthalmol. 1992 Mar;110(3):333–338. doi: 10.1001/archopht.1992.01080150031022. [DOI] [PubMed] [Google Scholar]
  18. Shields C. L., Shields J. A., Eagle R. C., Jr, De Potter P. Histopathologic evidence of fibrovascular ingrowth four weeks after placement of the hydroxyapatite orbital implant. Am J Ophthalmol. 1991 Mar 15;111(3):363–366. doi: 10.1016/s0002-9394(14)72323-2. [DOI] [PubMed] [Google Scholar]
  19. Sires B. S., Holds J. B., Archer C. R., Kincaid M. C., Hageman G. S. Histological and radiological analyses of hydroxyapatite orbital implants in rabbits. Ophthal Plast Reconstr Surg. 1995 Dec;11(4):273–277. doi: 10.1097/00002341-199512000-00009. [DOI] [PubMed] [Google Scholar]
  20. Summers C. G. Calcification of scleral-wrapped orbital implant in patients with retinoblastoma. Pediatr Radiol. 1993;23(1):34–36. doi: 10.1007/BF02020218. [DOI] [PubMed] [Google Scholar]

Articles from The British Journal of Ophthalmology are provided here courtesy of BMJ Publishing Group

RESOURCES